
Authors: Yuan Lu, Zhenliang Lu, Qiang Tang

Presenters: Anubhav Mishra, Sriharshini D, Aakash Kotha, Thrisha Kopula

Bolt-Dumbo Transformer: Asynchronous
Consensus As Fast As the Pipelined BFT

Key Terms

● Synchronous protocols - messages will be delivered within some known delay
(Upper bound)

● Asynchronous protocols - There are no fixed bounds on message delivery time.

● Partial Synchronous protocols - Asynchronous before some unknown point in
time (Global Standardization Time), and synchronous after that

Synchronous vs Asynchronous

● Problem with Synchronous protocols:
○ Synchronous protocols have threat from DOS attacks, fluctuating bandwidth,

unreliable links, substantial delays that may compromise safety and liveness in
an asynchronous network setting

● Need of Asynchronous protocols:
○ More robust in adversarial conditions
○ No Manual timeouts

Synchronous vs Asynchronous

Why are asynchronous consensus not practical for a long time?

Synchronous vs Asynchronous

Why are asynchronous consensus not practical for a long time?

● FLP impossibility!!
○ “ No deterministic protocol can ensure both safety and liveness in an

asynchronous network.”
○ Safety, liveness, fault tolerance or asynchrony?

● Asynchronous consensus is complicated and slower
● Many attempts were just theoretical

First asynchronous in practice

● HBBFT - First Practical Asynchronous Protocol
● 2 Phases (RBC & ABA)
● RBC: A special type of broadcast protocol
● ABA: Binary Agreement Phase
● In ABA, Each party has multiple joint instances running parallel to vote for each

and every Transaction
● So, the complete 2nd phase depends on slowest instance

● So, Dumbo!!!

Dumbo

● Asynchronous Common Subset (ACS)- Every honest party input values and
outputs “set” of values

● Instead of ABA in HBBFT, we use Multi-valued Validated Byzantine Agreement
(MVBA)

● Predefined predicate to validate whether the output is from a honest node or not
● MVBA is heavy tool, if inputs are large
● So, we send indexes as inputs instead
● RBC + MVBA = “Dumbo”

Latency Comparison

● Dumbo >> HB-BFT (Performance)

Latency Comparison (Cont.)

● However, Hotstuff >> Dumbo (Performance)

Latency Comparison (Cont.)

● But, Hotstuff >> Dumbo (Performance)

● So, there arises a need to design something even better!

Security vs Latency Dilemma

● Dilemma - we choose safety or fastness??

Can we get the best of both?

Synchronous:
Fast, but may not

have Safety

Asynchronous:
Robust, but still

quite slow

Security vs Latency Dilemma

● Dilemma - we choose safety or fastness??

Can we get the best of both?

 “ Optimistic Asynchronous Atomic Broadcast!! ”

Synchronous:
Fast, but may not

have Safety

Asynchronous:
Robust, but still

quite slow

● Framework that was proposed to improve slow, asynchronous consensus
● Consists of:

○ Deterministic Fastlane
■ Runs a deterministic protocol

○ Pessimistic Path
■ Runs an asynchronous protocol

○ Pace-Synchronization Mechanism
■ Uses a heavy Multi-Validated Byzantine Agreement (MVBA)

Optimistic Asynchronous Atomic Broadcast

Fastlane

Pace-Synchronization

Pessimistic Path

Pessimistic Path

Optimistic Asynchronous Consensus (Cont.)

● Problems with this:
○ Pace-sync mechanism too heavy
○ With frequent fallbacks, eliminates the benefits of adding a Fastlane

● We need a super light pace-sync and be able to utilize the fastlane more

Optimistic Asynchronous Consensus (Cont.)

● Problems with this:
○ Pace-sync mechanism too heavy
○ With frequent fallbacks, eliminates the benefits of adding a Fastlane

● We need a super light pace-sync and be able to utilize the fastlane more

“Bolt-Dumbo Transformer (BDT)!!”

Terminologies of Block

● log - list of blocks
● epoch - number that represents the round of operation
● slot - index number of blocks in epoch
● TXs - sequence of transactions (payload)
● Proof - quorum proof that attests that at least f + 1 honest parties contain the

previous block

Bolt-Dumbo Transformer (BDT)

○ Bolt (fastlane)
■ uses notarizable-weak atomic broadcast (nw-ABC) to allow for a simple

pace-sync mechanism
■ runs a deterministic protocol to quickly progress through synchronous

network conditions

○ Transformer (pace-synchronization mechanism)
■ uses a much simpler two-consecutive-valued Byzantine agreement

(tcv-BA)

○ Dumbo (pessimistic path)
runs an asynchronous protocol to ensure liveness

Overview of BDT Framework

Overview of BDT Framework

Overview of BDT Framework

● “Handicapped consensus”
○ fastlane that might keep on progressing under optimistic conditions:

Leader is honest and Network is synchronous. (similar to Hotstuff and PBFT)

● Notarizability property:
○ Whenever any party outputs a block at position 𝑗 with a valid quorum proof,

at least 𝑓 + 1 honest parties already output at the position 𝑗 − 1

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-1: There is honest node which input index at least s-1”

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-1: There is honest node which input index at least s-1”

At least f+1 honest nodes (Set
Good) already got s-1

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-1: There is honest node which input index at least s-1”

At least f+1 honest nodes (Set
Good) already got s-1

Remember everyone
receives a set C of

2f+1 complaints

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-1: There is honest node which input index at least s-1”

At least f+1 honest nodes (Set
Good) already got s-1

Remember everyone
receives a set C of

2f+1 complaints

At least one
common

between these 2
sets (C & Good)

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-2: No one can complain with index > s+1”

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-2: No one can complain with index > s+1”

If anyone can complain with index greater than s+1
then, according to notarizability, there will be f+1 honest
nodes already got s+1!

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Suppose the largest
valid index of a

honest node is ‘s’

“Claim-2: No one can complain with index > s+1”

If anyone can complain with index greater than s+1
then, according to notarizability, there will be f+1 honest
nodes already got s+1!

● We can make two claims:
○ No honest party can see a valid fallback request with an index >= s + 1
○ All honest parties must see some fallback request with an index >= s - 1

● These two claims narrow the range of fallback positions to {s-1, s}

Bolt - Notarizable-Weak Atomic Broadcast (nw-ABC)How does notarizability enable cheaper pace-sync?

Two-Consecutive-Valued Byzantine Agreement (tcv-BA)

● Asynchronous agreement for consecutive values
● Only has to choose a value s between {s-1, s}
● After s is chosen, we check:

○ If s > 0, progress was made in the fastlane, so we go back to the fastlane
○ If s = 0, no progress was made in the fastlane, so we switch to the

pessimistic path
● Utilizing the fastlane more and avoiding the use of pessimistic path as much as

possible

Execution Flow

After making some progress

How safety is ensured?

● Transformer returns a common index which all parties have to sync up to

● The parties will then continue onto the pessimistic path

● Transformer will choose an index that is not too large:

○ Will contradict the notarizability property - cannot guarantee that f + 1 parties

have all block up to that index

● Transformer will choose an index that is not too small:

○ No honest party can revoke any fastlane block that was already committed

How liveness is ensured?

● Fastlane has timeouts which ensure parties are not stuck

● If any party has missing blocks, f+1 honest parties will help fetch them

and so no honest party will be stuck at pace synch phase

● Pessimistic path ensures that any transactions can output with a

constant probability, thus ensuring liveness even if in the worst case

Performance & Evaluation-Latency

Performance & Evaluation-Throughput

Performance & Evaluation-In Bad Networks

References

1. https://www.youtube.com/watch?v=mOe1_8Q6DjI
2. https://arxiv.org/pdf/2103.09425.pdf
3. https://dl.acm.org/doi/abs/10.1145/3548606.3559346
4. https://dl.acm.org/doi/10.1145/3382734.3405707

https://www.youtube.com/watch?v=mOe1_8Q6DjI
https://arxiv.org/pdf/2103.09425.pdf
https://dl.acm.org/doi/abs/10.1145/3548606.3559346
https://dl.acm.org/doi/10.1145/3382734.3405707

Thank You

(Any Questions?)

