
HotStuff: BFT Consensus in the Lens of Blockchain

Paper by: Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham

Presentation by: Saipranav Kotamreddy, Madhumitha Venkatesan, Nikita B. Emberi, Srikkanth R

Diagrams pulled from:
https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf by Xianda Hou, Oliver Shen, Ashwin Sekhari, Sheshavishnuprasad D,
Mythreya K
https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf by Tong Zhu, Hongxiang Zhang, Siyuan Liu, Yifeng Shi,
Junchao Chen

https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf
https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf

PBFT Overview
HotStuff is based off of a Byzantine Fault Tolerance

protocol which allows the distributed system to achieve

consensus via a Leader Node and can handle malicious

nodes, for both the primary and replicas.

Protocol supports n>=3f+1, where n is total nodes and f is

the number of faulty nodes for the system to still work

Problem with PBFT

● BFT was designed around node counts between 4 and 7, however modern blockchain systems require this

node count to scale to the thousands, which PBFT is unequipped to handle

● This is in large part due to communication costs in BFT, as BFT has O(n^2) communication complexity and if a

view change is necessary, this raises to O(n^3) communication complexity

HotStuff’s Proposed Solution

● HotStuff makes use of a one-to-all message structure to address this scaling problem, where the

leader alone communicates to n replicas rather than every replica communicating with each other

● This structure places a large amount of power in the leader’s hands, so HotStuff utilizes frequent

view changes to avoid excess power being given to a single node

● Linear view changes to support frequent view changes

● Threshold Signature to allow for efficient combining of votes from non-primary replicas and for

replicas to verify the leader actually received n-f votes

PBFT:

Hotstuff:

View Change in PBFT vs HotStuff

Hotstuff:

Linear View Change

● Linear View Change means that the cost for a new primary to raise a proposal and conduct

consensus is equal to the cost for the original primary to do so

● A NextView Interrupt causes the replicas to send their status to the new primary and can happen

during at any point in the protocol

Threshold Signature

With a (k,n)-threshold signature scheme:

● Each replica has its own unique and distinct private key

● Each replica also possesses a common public key

● When a replica sends a message, it signs it using its private key as an ID

● At least k partial signatures can be combined into a final/complete signature

● If a replica receives a complete signature, it can verify it using the public key

Benefits:

● Reduces the number of signatures in consensus

● Reduces the size of the messages being sent

● Results in far less communication per node

● Less verification complexity

HotStuff Protocol Advancements and Key Features

- Linear View Change

- Optimistic Responsiveness

- Expenses incurred by a new leader to drive the protocol towards consensus are comparable to

those of the present leader.

- Solves a liveness problem, the hidden lock problem, with the view change protocol by adding a

lock-precursor phase.

Mitigating Liveness Issues with Precursor-Lock
Round:

Problem:

The hidden lock problem arises when a leader fails to wait for the expiration time (Δ) of a round.

Solution:

● HotStuff introduces a precursor-lock round before the actual lock round to mitigate the hidden

lock problem and prevent liveness violations caused by impatient leaders.

● In this precursor-lock round, the leader ensures hearing from 2F+1 participants, enabling it to

ascertain the highest lock value proposed (though not necessarily accepted). This mechanism

eliminates the necessity of waiting for the maximum Δ expiration time, enhancing system

efficiency and responsiveness.

Phases of HotStuff

Replicas send New-View
Messages

Prepare Vote with Partial
Signature

Leader selects prepareQC
with highest view and

extends with new proposal

Send Prepare Message to
Replicas

SafeNode
predicate Safety: node extends from

lockedQC .node
Liveness: QC.viewNumber >
lockedQC.viewNumber

True

False

Proposal View
Number

Quorum
Certificate

PrepareQC

1) PREPARE PHASE

SafeNode Check

Phases of HotStuff

2) Pre-commit Phase:

Leader Gathers Votes (n-f)
Prepare Vote for

CurProposal

Combine Votes into
Prepare Quorum

Certificate (PrepareQC)

Leader Broadcasts
PrepareQC to Replicas

Replicas Respond with
Signed Pre-Commit Votes

Phases of HotStuff

3) Commit Phase:

Receive (n-f) pre-commit
votes

Combine votes into
PreCommitQC

Broadcast PreCommitQC
using commit messages

Replicas respond with
commit votes

Replica assigns m.justify to
local lockedQC

Phases of HotStuff
4) Decide Phase: Receive Commit Votes

Execute CommitQC

Combine into CommitQC

Broadcast CommitQC

Start Next View

TrueIncrement View Number

In HotStuff, if a replica waits too long for a
message, it automatically moves to the next
view to maintain progress.

NextView Interrupt

● Waiting for Messages

● Utility Function: nextView(ViewNumber)

● Incrementing the view

Safety
1. No 2 conflicting QC will have the same view number. Voting only happens once.

2. No 2 conflicting nodes can be committed by correct replicas at any time.

● Atleast 2f + 1 replicas will be non faulty
● Quorum Certificate
● View Changes
● SafeNode Predicate

Liveness
● Prevents system from getting

stalled
● Avoiding deadlocks
● Optimistically Responsive

Hotstuff:

PBFT
:

What is Chained HotStuff and why do we need it?

Decrease type of messages Only one type of QC ever created

Simplify the protocol Easier to code event-driven style programs

Conceptually separate safety and liveness

View existing BFT protocols in a common framework

Idea : Pipeline the phases

Common in all phases:

Leader replicas Leader

Sen
d

ph
as

eQ
C Send ack

Repeated 4 times for each view!

<Phase Code>

View = 4

<Phase Code>

<Phase Code>

Idea: Pipeline the phases

L(v1)

<Phase 1>

L(v2)

<Phase 2>

Delegate <Phase 2>

L(v3)

<Phase 3>

L(v4)

<Phase 4>

Delegate <Phase 3> Delegate <Phase 4>

But L(v2) needs to start its own view…

L(v1)

<Phase 1>

L(v2)

<Phase 2>

L(v3)

<Phase 3>

L(v4)

<Phase 4>

<Phase 1> <Phase 2> <Phase 3>

continues ….

different colours represent different views

Same for L(v3), L(v4) ….

L(v1)

<Phase 1>

L(v2)

<Phase 2>

L(v3)

<Phase 3>

L(v4)

<Phase 4>

<Phase 1> <Phase 2> <Phase 3>

continues ….

<Phase 1> <Phase 2>

<Phase 1>

Code is identical for all views

L(v1)

<Phase 1>

L(v2)

<Phase 2>

L(v3)

<Phase 3>

L(v4)

<Phase 4>

<Phase 1> <Phase 2> <Phase 3>

continues ….

<Phase 1> <Phase 2>

<Phase 1>

<Phase 3>

<Phase 4> <Phase 4>

<Phase 2>

<Phase 4>

<Phase 3>

GenericQC GenericQC GenericQC

Code for different phases

Prepare Phase:

1. Leader sends QC
2. On receiving QC, check for
conflicts and vote

Pre-commit Phase:

1. Leader sends QC
2. On receiving QC,
 lock the node

Commit Phase:

1. Leader sends QC
2. On receiving QC, check for
conflicts and vote

Contents of GenericQCviewNumber

parent

grand-parent

great-grand-parent

Quorum Certificate for message

Node digests for verification

Blank nodes

View = height

One-chain, Two-chain and Three-chains

GenericQC GenericQC GenericQC

GenericQC GenericQC GenericQC

Earlier protocols under HotStuff Lens

DLS - Commit after one chain

● Voting node = locked node

● Only leader commits

● Complicated unlock mechanism

PBFT - Commit after two chains

● Lock after one phase

● Commit longest chain

● Convincing longest chain requires quadratic
messages per view.

Tendermint - Commit after two chains, but wait…

● Wait for max - delay (after GST) each
phase

● This guarantees liveness (no need for
large proofs of one-chains)

Sources Used

https://arxiv.org/pdf/1803.05069.pdf

https://www.youtube.com/watch?v=GAGW-c4hADA&t=39s

https://decentralizedthoughts.github.io/2023-04-01-hotstuff-2/

https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf

https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf

https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-libra

bft-a5503680b151

https://medium.com/@chamirachid/your-journey-to-consensus-part-4-hotstuff-c651a70b02b9

http://muratbuffalo.blogspot.com/2019/12/hotstuff-bft-consensus-in-lens-of.html

https://www.youtube.com/watch?v=ONobI3X70Rc&t=2s

https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf
https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf
https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-librabft-a5503680b151
https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-librabft-a5503680b151
https://medium.com/@chamirachid/your-journey-to-consensus-part-4-hotstuff-c651a70b02b9
http://muratbuffalo.blogspot.com/2019/12/hotstuff-bft-consensus-in-lens-of.html

