HotStuff: BFT Consensus in the Lens of Blockchain

Paper by: Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham

Presentation by: Saipranav Kotamreddy, Madhumitha Venkatesan, Nikita B. Emberi, Srikkanth R

Diagrams pulled from:

https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf by Xianda Hou, Oliver Shen, Ashwin Sekhari, Sheshavishnuprasad D,
Mythreya K

https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf by Tong Zhu, Hongxiang Zhang, Siyuan Liu, Yifeng Shi,

Junchao Chen

https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf
https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf

PBFT Overview

HotStuff is based off of a Byzantine Fault Tolerance
protocol which allows the distributed system to achieve
consensus via a Leader Node and can handle malicious
nodes, for both the primary and replicas.

Protocol supports n>=3f+1, where n is total nodes and f is
the number of faulty nodes for the system to still work

request

pPBFT Message Count

pre-prepare

prepare

commit

reply

3f
3f

3f(3f-f)
(3f)

(3F-F+1)(3F+1)
3f(3f+1)

3f-1
3f+1

AN
AN

N\
A\

Problem with PBFT

e BFT was designed around node counts between 4 and 7, however modern blockchain systems require this
node count to scale to the thousands, which PBFT is unequipped to handle

e Thisisinlarge part due to communication costs in BFT, as BFT has O(n”2) communication complexity and if a
view change is necessary, this raises to O(n”3) communication complexity

Authenticator complexity

Protocol Correct leader Leader failure (view-change) f leader failures Responsiveness
DLS [25] O(n*) O(n*) O(n*)

PBFT [20] O(n?) O(n?) O(fn?) v

SBFT [30] O(n) O(n?) O(fn?) v
Tendermint [15] / Casper [17] O(n?) O(n?) O(fn?)

Tendermint / Casper O(n) O(n) O(fn)

HotStuff O(n) O(n) O(fn) v

HotStuff's Proposed Solution

e HotStuff makes use of a one-to-all message structure to address this scaling problem, where the
leader alone communicates to n replicas rather than every replica communicating with each other
e This structure places a large amount of power in the leader’s hands, so HotStuff utilizes frequent
view changes to avoid excess power being given to a single node
Linear view changes to support frequent view changes
Threshold Signature to allow for efficient combining of votes from non-primary replicas and for

replicas to verify the leader actually received n-f votes

PBFT.
Leader
Hotstuff:
Replica
Replica
Replica

Request |Prc-Prcpare| Prepare | Commit | Reply
|
|
N |
|
|
|
|
|
prepareQC precommitQC
A
New-View E Prepare '; Prepare |Precommit E Precommit—| Commit E Commit— |
' —Vote i Vote ;. Vote

Decide |

AN/ AN/ AN
AR AR VAR

Y
SAFENODE()
check

prepareQC

lockedQC

locked

execute

PBFT

Detect View View Change New

P View

rn
. Ny
B \
Valid and move to view v+1
. 1st phase: aggresate, :
Hotstuff: R Tt 5
| /N s
IeM(er proposa
new leader @ ” 2 /
$ new proposal
@ 2 : with stotus cert
g not con‘tainin7 .3 msgs
@ \ / = lockedl \ stating ‘ot locked”
not
locked

. view-change

Linear View Change

Linear View Change means that the cost for a new primary to raise a proposal and conduct

([}
consensus is equal to the cost for the original primary to do so
e A NextView Interrupt causes the replicas to send their status to the new primary and can happen
during
st phase: aggregote,
uniquness ereate cert
O Ql
leadar o

new proposal

with status cert
not contc\ir\‘m7 3 msgS
locked \ S‘ta‘ting “not locked"

not
locked

: view-change

—

[

I‘/
Lock va[ug'\)

new leader O
0
0

Threshold Signature

With a (k,n)-threshold signature scheme:

e Eachreplicahasits own unique and distinct private key
e Eachreplica also possesses a common public key
e Whenareplicasends a message, it signs it using its private key as an ID
e Atleast k partial signatures can be combined into a final/complete signature
e [fareplicareceives acomplete signature, it can verify it using the public key
Benefits: Pubiic Key
e Reduces the number of signatures in consensus \/N) é (m _s«msm_,,/’;:?z D :
. . N .

e Reduces the size of the messages being sent i i o

. . . : s H >~ - \
e Resultsin far less communication per node 5 (:a) --Em:usnm»— u’\@;‘;‘z‘,’;}) -(SQ,ZT;,V
e Lessverification complexity o] sacs

OIENO == W\s.::'z.i:)

HotStuff Protocol Advancements and Key Features

- Linear View Change

- Optimistic Responsiveness

- Expensesincurred by a new leader to drive the protocol towards consensus are comparable to
those of the present leader.

- Solves aliveness problem, the hidden lock problem, with the view change protocol by adding a
lock-precursor phase.

Mitigating Liveness Issues with Precursor-Lock
Round:

Problem:
The hidden lock problem arises when a leader fails to wait for the expiration time (A) of a round.

Solution:
e HotStuff introduces a precursor-lock round before the actual lock round to mitigate the hidden

lock problem and prevent liveness violations caused by impatient leaders.

e Inthis precursor-lock round, the leader ensures hearing from 2F+1 participants, enabling it to
ascertain the highest lock value proposed (though not necessarily accepted). This mechanism
eliminates the necessity of waiting for the maximum A expiration time, enhancing system
efficiency and responsiveness.

Phases of HotStuff

1) PREPARE PHASE

False

Proposal View Quorum
P Number Certificate
PrepareQC

Replicas send New-View
Messages

Y

Leader selects prepareQC
with highest view and
extends with new proposal

Y

Send Prepare Message to
Replicas

SafeNode
predicate

True

Prepare Vote with Partial
Signature

Safety: node extends from
lockedQC .node

Liveness: QC.viewNumber >
lockedQC.viewNumber

SafeNode Check

Scenario 1 - LockedQC prepareQC
Replica will S .
Proposal re-p LockedQC . : :
2 ject the Replica will
\IE proposal . Proposal - geceptthe
e 3 proposal

lockedQC

Replica will accept the prepareQC and be

Scenario 3 unlocked

lockedQC prepareQC
$ f

D, 4

replica r's tree majority’s tree

Phases of HotStuff

2) Pre-commit Phase:

Pre-Com
Phase

mit

Leader Gathers Votes (n-f)
Prepare Vote for
CurProposal

Y

Combine Votes into
Prepare Quorum
Certificate (PrepareQC)

A A

Leader Broadcasts
PrepareQC to Replicas

A A

Replicas Respond with
Signed Pre-Commit Votes

Phases of HotStuff

3) Commit Phase:

Commit
Phase

Receive (n-f) pre-commit
votes

A4

Combine votes into
PreCommitQC

/

Broadcast PreCommitQC
using commit messages

Replica assigns m.justify to
local lockedQC

A4

Replicas respond with
commit votes

Phases of HotStuff

4) Decide Phase:
|
Decide
Phase
? ,('/;;‘)
N\ / N
N\ /
AN /
//
/'/
/
/
/
. ’}’\ / N
'~\°/‘;‘;2’"—>\. N1 ’;K:Toccnoc—“\v N3 ,3
P p— N

Receive Commit Votes

Combine into CommitQC

Broadcast CommitQC

Y

Execute CommitQC

Increment View Number

Y

[Start Next View }

In HotStuff, if a replica waits too long for a
message, it automatically moves to the next
view to maintain progress.

NextView Interrupt

e Waiting for Messages
e Utility Function: nextView(ViewNumber)

HotStuff . .
o Pre-commit commit decide
p Bl
" / . 7 \‘
r3

Previous View Prepare Prepare Vote Pre-commit Pre-commit Vote Commit Commit Vote Decide Next View

Safety

No 2 conflicting QC will have the same view number. Voting only happens once.
No 2 conflicting nodes can be committed by correct replicas at any time.

Atleast 2f + 1 replicas will be non faulty
Quorum Certificate

View Changes

SafeNode Predicate

Hotstuff:
Preparo Commit
New-View | |

Leader

Liveness |
° SPtrael\llee(;?ts system from getting :::::2] /// \\'// \// \
EAVARERN

e Avoiding deadlocks \/ \
1 | Ha-
0dQC

e Optimistically Responsive Replica 3
Waiting for 2f+1 nrmroﬂc | ool
------- » Commit msg that is sent but not received View
Only rl

PBFT

n

Client —* View change msg —* New View msg chan prts O I
: : i
Pre-prepare Prepare M AR Byt
p : e i the client

2

r3

What is Chained HotStuff and why do we need it?

l Decrease type of messages Only one type of QC ever created

Simplify the protocol Easier to code event-driven style programs

Conceptually separate safety and liveness

View existing BFT protocols in a common framework

Idea : Pipeline the phases

Common in all phases:

View =

<Phase Code>

replicas

<Phase Code>

Leader

<Phase Code

Repeated 4 times

<4

V

5 for each view!

Idea: Pipeline the phases

Delegate <Phase 2> Delegate <Phase 3> Delegate <Phase 4>

<Phase 1> <Phase 2> <Phase 3> <Phase 4>

But L(v2) needs to start its own view...

continues

<Phase 1> <Phase 2> <Phase 3> <Phase 4>

<Phase 1> <Phase 2> <Phase 3>

O different colours represent different views

Same for L(v3), L(v4) ...

<Phase 1>

continues

<Phase 2>

<Phase 1>

<Phase 3>
<Phase 2>

<Phase 1>

<Phase 4>
<Phase 3>
<Phase 2>

<Phase 1>

Code is identical for all views

continues
GenericQC GenericQC GenericQC
<Phase 1> <Phase 2> <Phase 3> <Phase 4>
<Phase 2> <Phase 1> <Phase 2> <Phase 3>
<Phase 3> <Phase 1> <Phase 2>

<Phase 3> <Phase 4> <Phase 1>

Code for different phases

Prepare Phase: Pre-commit Phase:

1. Leader sends QC 1. Leader sends QC
2. On receiving QC, check for 2. On receiving QC,
conflicts and vote lock the node

Commit Phase:

1. Leader sends QC
2. On receiving QC, check for
conflicts and vote

viewNumber

parent

grand-parent

great—-grand-parent

Quorum Certificate for message

Node digests for verification

Blank nodes

View = height

One-chain, Two-chain and Three-chains

GenericQC

--| GenericQC |[C Q| GenericQC

GenericQC

CD| GenericQC

CD| GenericQC

b

height ¥ : heightk +1

b*
QC

(a) One-Chain (DLS, 1988)

i

b : b

b*
QC

i

height K : height k+ 1 : height k+2 °

(b) Two-Chain (PBFT, 1999)

!

. N A .
height k height k +1 height k£ + 2
(c) Two-Chain w/ delay (Tendermint, 2016)

DLS - Commit after one chain

e Voting node = locked node

s b ; b* z
e QC : QC j e Only leader commits
5 height £ height k& + 1 e Complicated unlock mechanism

(a) One-Chain (DLS, 1988)

PBFT - Commit after two chains

b ﬁm_\m : e Lock after one phase
oc| f—=—oc| J—=—ec j 5
helght k helght k + 1 : height k& + 2

(b) Two-Chain (PBFT, 1999)

AN

e Commit longest chain

e Convincing longest chain requires quadratic
messages per view.

Tendermint - Commit after two chains, but wait...

1 b Y N

<

A

ZAZ

IAI

" heightk heightk+1 heightk + 2

(c) Two-Chain w/ delay (Tendermint, 2016)

Wait for max - delay (after GST) each
phase

This guarantees liveness (no need for
large proofs of one-chains)

Sources Used

https://arxiv.org/pdf/1803.05069.pdf
https:// www.youtube.com/watch?v=GAGW-c4hADA&t=3%s
https://decentralizedthoughts.github.io/2023-04-01-hotstuff-2/

https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf

https://expolab.org/ecs265-fall-2021/slides/4 HotStuff.pdf

https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-libra
bft-a5503680b151

https://medium.com/@chamirachid/your-journey-to-consensus-part-4-hotstuff-c651a70b02b9

http://muratbuffalo.blogspot.com/2019/12/hotstuff-bft-consensus-in-lens-of.html

https://www.youtube.com/watch?v=ONobI3X70Rc&t=2s

https://expolab.org/ecs265-fall-2022/slides/HotStuff-presentation.pdf
https://expolab.org/ecs265-fall-2021/slides/4_HotStuff.pdf
https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-librabft-a5503680b151
https://medium.com/ontologynetwork/hotstuff-the-consensus-protocol-behind-facebooks-librabft-a5503680b151
https://medium.com/@chamirachid/your-journey-to-consensus-part-4-hotstuff-c651a70b02b9
http://muratbuffalo.blogspot.com/2019/12/hotstuff-bft-consensus-in-lens-of.html

