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PBFT Overview

HotStuff is based off of a Byzantine Fault Tolerance
protocol which allows the distributed system to achieve
consensus via a Leader Node and can handle malicious
nodes, for both the primary and replicas.

Protocol supports n>=3f+1, where n is total nodes and f is
the number of faulty nodes for the system to still work
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Problem with PBFT

e BFT was designed around node counts between 4 and 7, however modern blockchain systems require this
node count to scale to the thousands, which PBFT is unequipped to handle

e Thisisinlarge part due to communication costs in BFT, as BFT has O(n”2) communication complexity and if a
view change is necessary, this raises to O(n”3) communication complexity

Authenticator complexity
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HotStuff's Proposed Solution

e HotStuff makes use of a one-to-all message structure to address this scaling problem, where the
leader alone communicates to n replicas rather than every replica communicating with each other
e This structure places a large amount of power in the leader’s hands, so HotStuff utilizes frequent
view changes to avoid excess power being given to a single node
Linear view changes to support frequent view changes
Threshold Signature to allow for efficient combining of votes from non-primary replicas and for

replicas to verify the leader actually received n-f votes
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Linear View Change

Linear View Change means that the cost for a new primary to raise a proposal and conduct
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Threshold Signature

With a (k,n)-threshold signature scheme:

e Eachreplicahasits own unique and distinct private key
e Eachreplica also possesses a common public key
e Whenareplicasends a message, it signs it using its private key as an ID
e Atleast k partial signatures can be combined into a final/complete signature
e [fareplicareceives acomplete signature, it can verify it using the public key
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HotStuff Protocol Advancements and Key Features

- Linear View Change

- Optimistic Responsiveness

- Expensesincurred by a new leader to drive the protocol towards consensus are comparable to
those of the present leader.

- Solves aliveness problem, the hidden lock problem, with the view change protocol by adding a
lock-precursor phase.



Mitigating Liveness Issues with Precursor-Lock
Round:

Problem:
The hidden lock problem arises when a leader fails to wait for the expiration time (A) of a round.

Solution:
e HotStuff introduces a precursor-lock round before the actual lock round to mitigate the hidden

lock problem and prevent liveness violations caused by impatient leaders.

e Inthis precursor-lock round, the leader ensures hearing from 2F+1 participants, enabling it to
ascertain the highest lock value proposed (though not necessarily accepted). This mechanism
eliminates the necessity of waiting for the maximum A expiration time, enhancing system
efficiency and responsiveness.



Phases of HotStuff

1) PREPARE PHASE
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SafeNode Check
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Phases of HotStuff

2) Pre-commit Phase:
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Phases of HotStuff

3) Commit Phase:
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Phases of HotStuff

4) Decide Phase:
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message, it automatically moves to the next
view to maintain progress.



NextView Interrupt

e Waiting for Messages
e Utility Function: nextView(ViewNumber)
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Safety

No 2 conflicting QC will have the same view number. Voting only happens once.
No 2 conflicting nodes can be committed by correct replicas at any time.

Atleast 2f + 1 replicas will be non faulty
Quorum Certificate

View Changes

SafeNode Predicate



Hotstuff:
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What is Chained HotStuff and why do we need it?

l Decrease type of messages  Only one type of QC ever created

Simplify the protocol Easier to code event-driven style programs

Conceptually separate safety and liveness

View existing BFT protocols in a common framework



Idea : Pipeline the phases

Common in all phases:

View =

<Phase Code>

replicas
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Repeated 4 times
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Idea: Pipeline the phases

Delegate <Phase 2> Delegate <Phase 3> Delegate <Phase 4>

<Phase 1> <Phase 2> <Phase 3> <Phase 4>



But L(v2) needs to start its own view...

continues ....

<Phase 1> <Phase 2> <Phase 3> <Phase 4>

<Phase 1> <Phase 2> <Phase 3>

O different colours represent different views



Same for L(v3), L(v4) ...

<Phase 1>

continues ....
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Code is identical for all views

continues ....
GenericQC GenericQC GenericQC
<Phase 1> <Phase 2> <Phase 3> <Phase 4>
<Phase 2> <Phase 1> <Phase 2> <Phase 3>
<Phase 3> <Phase 1> <Phase 2>

<Phase 3> <Phase 4> <Phase 1>



Code for different phases

Prepare Phase: Pre-commit Phase:

1. Leader sends QC 1. Leader sends QC
2. On receiving QC, check for 2. On receiving QC,
conflicts and vote lock the node

Commit Phase:

1. Leader sends QC
2. On receiving QC, check for
conflicts and vote
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One-chain, Two-chain and Three-chains
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DLS - Commit after one chain

e Voting node = locked node

s b ; b* z
e QC : QC j e Only leader commits
5 height £ height k& + 1 e Complicated unlock mechanism

(a) One-Chain (DLS, 1988)



PBFT - Commit after two chains

b ﬁm_\m : e Lock after one phase
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(b) Two-Chain (PBFT, 1999)
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e Commit longest chain

e Convincing longest chain requires quadratic
messages per view.



Tendermint - Commit after two chains, but wait...
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(c) Two-Chain w/ delay (Tendermint, 2016)

Wait for max - delay (after GST) each
phase

This guarantees liveness (no need for
large proofs of one-chains)
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