
Fast Paxos
Trevor Chan

Outline

1. Paxos Protocol

2. Fast Paxos Protocol

Consensus Correctness Criteria

Safety

If value is chosen, then value must be chosen by

any other process that has chosen a value

Value chosen must have been proposed by one of

processes in system

Only value chosen by process can be learned by a

process

Liveness

Eventually, some value is chosen and a process in the

system can learn that value

Fault-Tolerant Consensus

How can we get a network of processes to agree to a single data value?

Very difficult in the presence of faults; ad-hoc approaches always fail

Messages sent but not delivered

Messages delivered multiple times

Processes dying, missing messages, then later recovering

What does it mean for processes to “agree” anyway?

Usually if majority (quorum) choose single value, that value is agreed upon

No deterministic fault-tolerant consensus protocol can guarantee progress

All we can do is design protocols such that problems are unlikely to occur

What is the Paxos Protocol?

The Paxos Protocol solves fault-tolerant consensus!

Introduced by Leslie Lamport in 1998

High-level overview:

A single elected leader (proposer) handles all client requests

The protocol has two phases, prepare and accept

Can withstand complete loss of a minority of nodes

Protocol can become livelocked, but this state is unlikely and unstable

A Problem!

Your bank has your account balance stored on a computer

Don’t want to lose account balance if computer crashes/is hit by meteorite

Solution: bank replicates the account balance to multiple computers!

How can the bank maintain consistency

among the replicas?

Bank Account Problem

What should the bank achieve through

replication?

Confirmed transactions - deposit &

withdrawal - don’t disappear (Safety)

Customers able to deposit & withdrawn when

server crashes are not too many (Liveness)

7

The bank replicas as state machines

Paxos Roles

Proposer/Coordinator

Proposes values to be chosen (by acceptors) and

learned (by learners)

Acceptor

Participates in agreement negotiation on the

values proposed

Learner

Learns the values that are chosen

Paxos: Phases in a single transaction

Phase 1a (P1a): Prepare

Proposer (Coordinator) receives a client request, so creates a proposal tagged with ordered ID N

Prepare message sent to all Acceptors, containing N

Phase 1b (P1b): Promise

If N is greater than any proposal ID previously seen by the Acceptor, Acceptor returns a Promise

message

The Promise message indicates it will reject any future proposals with ID value less than N

If the Acceptor previously accepted a proposal, it must include its ID and value in the message

Phase 2a (P2a): Propose

If the Proposer received promises from the majority of Acceptors (a quorum), this phase is entered

If any Acceptors returned a previously accepted proposal, its value overwrites the client request

The Proposer sends an Accept request to all acceptors with N and the associated value

Phase 2b (P2b): Accept

Acceptor accepts Accept request IFF it has not returned a Promise message for ID greater than N

If the majority of Acceptors accept the request, the value is chosen and cannot be overwritten

Time →

Fast Paxos

1. Reduces end-to-end latency of reaching a consensus in

scenarios when clients are responsible to propose values

to be chosen by acceptors

• Reduces cost of reaching consensus by enabling running of

one P2a message for all instances of Fast Paxos in state-

machine replication

1

2

State Machine Approach

1

3

Classic Paxos

Replicating single transaction

1st RTT –Phase 1 (prepare request & response)

2nd RTT –Phase 2 (accept request & response)

Building block in cloud services (AWS, Azure, Google, …)

Replication across multiple servers in every datacenter

14

Fast Paxos

Replicating transactions across

geographically distributed

datacenters

surviving earthquakes, etc.

Fast Paxos – single RTT

Classic Paxos –2 RTTs

15

Is Simple Majority Sufficient?

Accept only the first value + declare success with simple majority

Time →

Any problem?
12

Is Simple Majority Sufficient?

What if S3 is gone forever? Was it red, blue or neither?

Time →

How can we avoid ambiguity and fix this?
13

Avoiding Ambiguity with Larger Quorum

Choose larger quorum (4 out of 5) + declare success with quorum

Time →

Does larger quorum indeed avoid ambiguity?
14

Avoiding Ambiguity with Larger Quorum

Observing 2 red and 2 blue neither red nor blue made it

Time →

Forget both red and blue treat as clean slate
15

Avoiding Ambiguity with Larger Quorum

Observing 3 red and 1 blue be conservative and retry red

Time →

run Classic Paxos with red
16

Recap

Choose larger quorum (Ex: 4 out of 5 servers)

Perform single RTT request & response

send transaction to all 5 servers and solicit responses

Inspect any quorum of responses

No collision: quorum containing single accepted value

transaction succeeded

Collision recovery case I: multiple accepted values w/o majority

treat as clean slate

Collision recovery case II: multiple accepted values w / majority

run Classic Paxos with the majority value

17

Additional Details

Previous algorithm isn’t exactly Fast Paxos, but

covers core idea

Additional details of Fast Paxos

How to choose quorum size?

Collision recovery completes in single RTT

Classic Paxos would have taken 2 RTTs

22

Quorum Size

Two types of rounds

Fast round

Classic round –most identical to Classic Paxos

Quorum size may differ in fast and classic rounds

Quorum rule of Fast Paxos

23

Quorum Size

FASTquorum replica

|FAST quorum|=4 => |CLASSIC quorum|=3

Single RTT Completion in Fast Paxos

Both fast round and classic round take two RTTs

1st RTT –Phase 1 (prepare request & response)

2nd RTT –Phase 2 (accept request & response)

Key idea behind single RTTcompletion

Phase 1 can be omitted, when it is implied by

initial state

messages in previous round

25

Quorum Size

of Replicas |Fast Quorum| |Classic Quorum|

3 3 2

5 4 3

7 5 5

9 7 5

26

Time →

Example Walkthrough: Fast Round 0

Phase 1a (p1a) : coordinator ➔ all acceptors

Prepare request: [phase1a, round = 0]

Phase 1b (p1b) : acceptors ➔ coordinator

Prepare response: [phase1b, round = 0, acceptor j]

Phase 2a (p2a) : coordinator ➔ all acceptors

Accept request: [phase2a, round = 0, value = any]

Phase 2b (p2b) : acceptors ➔ coordinator

Accept response: [phase2b, round = 0, acceptor j, value = vj]

vj: arbitrary value chosen independently by each acceptor

pre-executed

before boot

=>

safe to omit

23

FAST Round 0

Time →
24

Withdraw $20

FAST Round 0

Time →

Withrdraw $20

coordinator

p1a p1b p2a p2b

before boot
25

Single RTT Collison Recovery

roundi accept response

[phase2b, round = i, acceptor j, value =vj]

roundi+1 prepare response

[phase1b, round = i+1, acceptor j, voted_round = i, voted_value = vj]

roundi accept response => roundi+1 prepare response

safe to omit roundi+1 Phase 1

31

Summary

Simplified Fast Paxos

Larger quorum

Single RTT request & response

Quorum of responses: unique value, w / or w/o majority

How to choose quorum size?

How omitting Phase 1 makes Paxos fast?

32

