Authors: Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, Alan Fekete

Presenter: Kavish Doshi 1/33




O Infroduction

O Architecture

O The MDCC Protocol
O Guarantees

O Evaluation

2/33



Introduction

O Why multi-data center ¢
v Growing capacity over time
v Providing global reach with minimum latency
v Maintaining performance and availability

. Providing additional instances for resiliency

2. Providing a facility for disaster recovery 223



Introduction

O Few Data cenitres' fallure examples:
1 Gmail servers outrage — September 1, 2009

1 Amazon’s Elastic Compute and Relational Database
Service - August 7, 2011

- Dallas —Fort Worth Data Center Power outrages —
June 29,2009 .




Introduction

O Whatis MDCC ¢

» Multi-Da

'a Center Consistency is also called MDCC

> Itis a da
. Strong

‘abase which provides tfransactions with
consistency

2. Synchronous replication for fault-tolerant durability
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Architecture

O The two kind of components:
» Stateful components
v They are dispersed as a distributed record manager.
v" Can be scaled via methods like range partitioning
»Stateless component

v Queries and transactions fall under this category and
they can be deployed in any app server

v Can be replicated freely as it is stateless 6/33



Architecture

O The fransaction manager can © picatin Sever
elther: = Storage Servers

@ Master Server

» Claim ownership of the
records

» Ask the current master to do
it (Black arrows)

»lgnore the master and
update directly (red arrows)
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Paxos Background

O Classic Paxos:
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Paxos Background

OMultl Paxos:

»Maintains the leader position for multiple rounds, hence
removmg ’rhe need for phase 1 messages:
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The MDCC Protocol

OFirst let us look at the animation and understand
the concept:

»ANIMATION
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http://mdcc.cs.berkeley.edu/

The MDCC Protocol

O About MDCC Transactions:
» Features:
v Atomic Durability
v Detection of write-write conflicts
v Commit Visibility

» Uses Paxos to "Yaccept” an option for an update instead of
writing the value

» Waiting for the app server to asynchronously commit or
abort 11/33



The MDCC Protocol

» A fransaction updating a record creates a new version,
which is represented in the form of
Vread -> Vwrite

» The transaction only allows one outstanding option per
record, which stays invisible until the option is executed.
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The MDCC Protocol

» The app server fries to get the options accepted for
all the updates. Proposing the options to the Paxos,
iInstances of each record.

» Depending on the Vread value the nodes actively
decide whether to accept or reject. Unlike Paxos
which uses ballot number.
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The MDCC Protocol

»The app-server learns of an option if and only if a
Majority of storage nodes agree on the option.

»No clients or app-server aborts.
» Abort only happens it an opfion is rejected.

»1f the app-server determines that the transaction is
aborted or committed, it iInforms the storage node
through an asynchronous learned message about the
decision. s



The MDCC Protocol

O So far we have achieved:

1. 1 round trip commit, assuming all the masters are
local.

2. 2 round trip commit when the masters are not
local.
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The MDCC Protocol

O Avoiding Deadlocks

»Assuming T1 and T2 want to learn an option for both R
and R2.

»T1 learns vO->v1 for R1 and T2 tries to acquire vO->v2 for
R2.

»Pessimistically T1 learn is accepted and T2 learn is
rejected in the next phase

~In a case of deadlock it leads fo both fransacfions to
reject. 16/33



The MDCC Protocol

O Failure recovery

»Failure of a storage node is masked by the use of
quorums.

»Master taillure can be recovered by reselecting a
master after a fimeout.
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The MDCC Protocol

O App-server failure

> All options include a unigue transaction-id + all primary keys of
the write-set.

» A log of all learned options is kept af the storage node.

» After a set fimeout, any node can reconstruct the state by
reading from a quorum of storage nodes for every key in the
fransaction.

o Data center failure-all nodes failed. 18/33



Paxos Background

O Fast Paxos

v Removes the need to become the leader, allowing
any nhode to propose the value.

v'Requires larger quorum size.
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The MDCC Protocol

O Transactions Bypassing Master

»Using fast Paxos we assume all versions start with o
fast ballot number, until a master change it into
classic via phasel message.

»Any storage node agrees to accept the first
proposed value.
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The MDCC Protocol

O Collision recovery

»Fast guorum can fail, which leads to a classic ballot from the
master.

»Fast policy:
v Assume all instances start as fast.

v After a collision set the next X (default 100) instances as
classic.

v’ After X instances go back to fast again. 21/33



Paxos Background

O Generalized Paxos
»Combines tast and classic Paxos.
»Each round accepts a sequence of values.
»Seqguence has to be identical on all accepftors.
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The MDCC Protocol

O Let's look into another animation of MDCC
Demarcation Protocol:

> ANIMATION
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http://mdcc.cs.berkeley.edu/

The MDCC Protocol

O MDCC usage of generalized Paxos

v Single record Paxos instances, meaning no sequence
for normal operations.

v'Sequence is only available for commutative
operations.
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Guarantees

O Read Committed Without Lost Updates
~It only allows a transaction to read learned options.

>t can detect all write-write conflicts so that a Lost
Jpdate option gets rejected.

O Currently MS SQL server, Oracle database, [BM DB2

all use Read Committed by default. 25/33



Guarantees

O Staleness

»We allow reads from any node, but the read might
be stale if the node missed updates.

» A safe read, requires reading a majority of the
nodes.
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Guarantees

O Atomic visibility

»MDCC supports atomic durabllity, but not visibility,
this is The same for two-phase commif.

»MDCC could use a read/write locking service or
snapshot isolation (used in Spanner) to achieve
Atomic Visibility.
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Olmplementation of a MDCC over a key value store
across 5 different geographically located
datacenters using amazon EC2 cloud.

OFor testing, used TPC-W, a fransactional benchmark
that simulates the workload experienced by an e-
commerce web server.
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OCompetition:

»Quorum write. (no isolation, atomicity, or
fransactional guarantee)

»Two Phase Commit. (cannot deal with node failure)

»Megastore* (couldn’t compare to the real one,

Implemented one based on the arficle about it)
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Evaluation

O Setup:
» 100 evenly geo replicated clients running the benchmark

> 10,000 items in the database
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Evaluation

O MDCC compared to itselt:
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Evaluation

O MDCC compared to itself:
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