
MDCC:

Multi-Data Center Consistency

Authors: Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, Alan Fekete

Presenter: Kavish Doshi 1/33

Outline

 Introduction

 Architecture

 The MDCC Protocol

 Guarantees

 Evaluation

2/33

Introduction

 Why multi-data center ?

✓ Growing capacity over time

✓ Providing global reach with minimum latency

✓ Maintaining performance and availability

1. Providing additional instances for resiliency

2. Providing a facility for disaster recovery
3/33

Introduction

 Few Data centres' failure examples:

❑ Gmail servers outrage – September 1, 2009

❑ Amazon’s Elastic Compute and Relational Database

Service - August 7, 2011

❑ Dallas –Fort Worth Data Center Power outrages –

June 29,2009
4/33

Introduction

 What is MDCC ?

➢ Multi-Data Center Consistency is also called MDCC

➢ It is a database which provides transactions with

1. Strong consistency

2. Synchronous replication for fault-tolerant durability
5/33

Architecture

 The two kind of components:

➢ Stateful components

✓ They are dispersed as a distributed record manager.

✓ Can be scaled via methods like range partitioning

➢Stateless component

✓ Queries and transactions fall under this category and
they can be deployed in any app server

✓ Can be replicated freely as it is stateless 6/33

Architecture

The transaction manager can

either:

➢Claim ownership of the

records

➢Ask the current master to do

it (Black arrows)

➢Ignore the master and

update directly (red arrows) 7/33

Paxos Background

 Classic Paxos:

8/33

Paxos Background

Multi Paxos:

➢Maintains the leader position for multiple rounds, hence

removing the need for phase 1 messages:

9/33

The MDCC Protocol

First let us look at the animation and understand

the concept:

➢ANIMATION

10/33

http://mdcc.cs.berkeley.edu/

The MDCC Protocol

 About MDCC Transactions:

➢ Features:

✓ Atomic Durability

✓Detection of write-write conflicts

✓Commit Visibility

➢ Uses Paxos to “accept” an option for an update instead of
writing the value

➢ Waiting for the app server to asynchronously commit or
abort 11/33

The MDCC Protocol

➢ A transaction updating a record creates a new version,

which is represented in the form of

Vread -> Vwrite

➢ The transaction only allows one outstanding option per

record, which stays invisible until the option is executed.

12/33

The MDCC Protocol

➢ The app server tries to get the options accepted for

all the updates. Proposing the options to the Paxos,

instances of each record.

➢ Depending on the Vread value the nodes actively

decide whether to accept or reject. Unlike Paxos

which uses ballot number.

13/33

The MDCC Protocol

➢The app-server learns of an option if and only if a

majority of storage nodes agree on the option.

➢No clients or app-server aborts.

➢Abort only happens if an option is rejected.

➢If the app-server determines that the transaction is

aborted or committed, it informs the storage node

through an asynchronous learned message about the

decision. 14/33

The MDCC Protocol

 So far we have achieved:

1. 1 round trip commit, assuming all the masters are

local.

2. 2 round trip commit when the masters are not

local.

15/33

The MDCC Protocol

 Avoiding Deadlocks

➢Assuming T1 and T2 want to learn an option for both R1
and R2.

➢T1 learns v0->v1 for R1 and T2 tries to acquire v0->v2 for
R2.

➢Pessimistically T1 learn is accepted and T2 learn is
rejected in the next phase

➢In a case of deadlock it leads to both transactions to
reject. 16/33

The MDCC Protocol

 Failure recovery

➢Failure of a storage node is masked by the use of

quorums.

➢Master failure can be recovered by reselecting a

master after a timeout.

17/33

The MDCC Protocol

App-server failure

➢All options include a unique transaction-id + all primary keys of

the write-set.

➢A log of all learned options is kept at the storage node.

➢After a set timeout, any node can reconstruct the state by

reading from a quorum of storage nodes for every key in the

transaction.

o Data center failure-all nodes failed. 18/33

Paxos Background

 Fast Paxos

✓Removes the need to become the leader, allowing

any node to propose the value.

✓Requires larger quorum size.

19/33

The MDCC Protocol

 Transactions Bypassing Master

➢Using fast Paxos we assume all versions start with a

fast ballot number, until a master change it into

classic via phase1 message.

➢Any storage node agrees to accept the first

proposed value.

20/33

The MDCC Protocol

Collision recovery

➢Fast quorum can fail, which leads to a classic ballot from the

master.

➢Fast policy:

✓Assume all instances start as fast.

✓After a collision set the next X (default 100) instances as

classic.

✓After X instances go back to fast again. 21/33

Paxos Background

 Generalized Paxos

➢Combines fast and classic Paxos.

➢Each round accepts a sequence of values.

➢Sequence has to be identical on all acceptors.

22/33

The MDCC Protocol

 Let’s look into another animation of MDCC

Demarcation Protocol:

➢ ANIMATION

23/33

http://mdcc.cs.berkeley.edu/

The MDCC Protocol

 MDCC usage of generalized Paxos

✓Single record Paxos instances, meaning no sequence

for normal operations.

✓Sequence is only available for commutative

operations.

24/33

Guarantees

 Read Committed Without Lost Updates

➢It only allows a transaction to read learned options.

➢It can detect all write-write conflicts so that a Lost
Update option gets rejected.

 Currently MS SQL server, Oracle database, IBM DB2
all use Read Committed by default.

25/33

Guarantees

 Staleness

➢We allow reads from any node, but the read might

be stale if the node missed updates.

➢A safe read, requires reading a majority of the

nodes.

26/33

Guarantees

 Atomic visibility

➢MDCC supports atomic durability, but not visibility,

this is the same for two-phase commit.

➢MDCC could use a read/write locking service or

snapshot isolation (used in Spanner) to achieve

Atomic Visibility.

27/33

Evaluation

Implementation of a MDCC over a key value store

across 5 different geographically located

datacenters using amazon EC2 cloud.

For testing, used TPC-W, a transactional benchmark

that simulates the workload experienced by an e-
commerce web server.

28/33

Evaluation

Competition:

➢Quorum write. (no isolation, atomicity, or

transactional guarantee)

➢Two Phase Commit. (cannot deal with node failure)

➢Megastore* (couldn’t compare to the real one,

implemented one based on the article about it)
29/33

Evaluation

 Setup:

➢100 evenly geo replicated clients running the benchmark

➢10,000 items in the database

30/33

Evaluation

 MDCC compared to itself:

31/33

Evaluation

 MDCC compared to itself:

32/33

Thank you

33/33

