
ECS 265 DISTRIBUTED
DATABSE SYSTEMS
CONSENSUS ON TRANSACTION COMMIT. TODS’06

M A D E BY -

A R C H I T G A R G

1

Agenda

What is the paper about?

Two Phase Commit

Paxos Commit

Conclusion

2

Introduction

The distributed transaction commit problem requires reaching agreement on whether a
transaction is committed or aborted.

In this presentation we will be looking at the following algorithms for committing a transaction:
◦ Two Phase Commit

◦ Paxos Commit Algorithm

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

3

Assumptions
 The algorithms are executed by a collection of processes that communicate using messages

Each process executes at a node in a network

A process can save data on stable storage that survives failures.

Different processes may execute on the same node

The cost model counts internode messages, message delays, stable-storage writes, and stable-
storage write delays.

The failure model assumes that nodes, their processes, can fail, messages can be lost or
duplicated, but not (undetectably) corrupted

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

4

Correctness Properties
Correctness Properties are those properties that the aforementioned algorithms must satisfy.
There are two properties that must be satisfied :

Safety:
◦ Describes what is allowed to happen

◦ Time independent

◦ Not bounded on message delay

Liveness:
◦ Describes what must happen.

◦ Time Dependent

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

5

What is a non-faulty node?

A non-faulty node is defined to be one whose processes respond to messages
within some known time limit.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

6

Transaction Commit
A Transaction Commit is referred to saving the data permanently or committing the data
permanently to the stable storage at the end of a transaction.

The information in the transaction becomes visible to other users only after a commit takes
place.

A Transaction commit is performed by a collection of processes called resource managers.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

7

Safety Requirements

•Stability. Once an RM has entered the committed or aborted state, it remains in that state
forever.

•Consistency. It is impossible for one RM to be in the committed state and another to be in the
aborted state.

These two properties imply that, once an RM enters the committed state, no other RM can enter
the aborted state, and vice versa.

Each RM also has a prepared state.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

8

The requirements imply that the transaction can commit if all
RMs reach the committed state, only by the following
sequence of events:

—All the RMs enter the prepared state, in any order;
—All the RMs enter the committed state, in any order.
—Any RM in the working state can enter the aborted state.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

9

The two liveness properties for Transaction commit is as follows:

Nontriviality - If the entire network is nonfaulty throughout the execution of the protocol:

• If all RMs reach the prepared state, then all RMs eventually reach the committed state
• If some RM reaches the aborted state, then all RMs eventually reach the aborted state.

Nonblocking – If a sufficiently large network of nodes is nonfaulty for long enough, then every RM executed on those
nodes will eventually reach either the committed or aborted state.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

10

Two Phase Commit Protocol
The Two-Phase Commit protocol uses a transaction manager (TM) process to coordinate the
decision-making procedure.

The TM has the following states:
◦ init (its initial state)

◦ Preparing

◦ Committed

◦ Aborted.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

11

The Two Phase Commit protocol is as follows:

• An RM enters the prepared state and sends a
Prepared message to the TM.

• The TM enters the preparing state and sends a
Prepare message to every other RM.

• An RM that is still in the working state can enter
the prepared state and send a Prepared
message to the TM.

• After recieveing prepared message from all RMs,
the TM can enter the committed state and send
Commit messages to all the other processes.

• The RMs can enter the committed state upon
receipt of the Commit message from the TM.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

12

Two Phase Protocol : Abort

An RM can spontaneously enter the aborted state if it is in the working state.

TM can spontaneously enter the aborted state unless it is in the committed state.

After the TM aborts, it sends an abort message to all RM.

RM enters the aborted state.

Spontaneous aborting can be triggered by a timeout.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

13

Failure and Restart

Process failure and restart is easy to handle.

Each process records its current state in stable storage before sending any message.

When a failed process is restarted, it can simply restore its state from stable storage and continue
executing the algorithm.

Process failure and restart is equivalent to the process pausing.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

14

Cost of Two Phase commit

—The initiating RM enters the prepared state and sends a Prepared message to the TM. (1 message)

—The TM sends a Prepare message to every other RM. (N − 1 messages)

—Each other RM sends a Prepared message to the TM. (N − 1 messages)

—The TM sends a Commit message to every RM. (N messages)

Therefore, a total of: 3N-1 messages

If the TM is on the same node as RM then, the cost of intranode messages can be discounted making a total cost of
3N-3 messages.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

15

Limitations

Two phase commit protocol is a blocking protocol.

A node will block while it is waiting for a message

A single node will continue to wait even if all other sites have failed.

The resources are tied up forever.

The protocol is conservative. It is biased to the abort case rather than the complete case.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

16

Paxos Commit

The Paxos algorithm is a popular asynchronous consensus algorithm.

It uses a series of ballots numbered by nonnegative integers, each with a predetermined
coordinator process called the leader.

One instance of Paxos is executed for each resource manager, in order to agree upon a
value(Prepared/aborted) proposed by it.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

17

Participants: The Resource Manager

 N resource managers(RM) execute the distributed transaction, then choose a value (Locally chosen Value) for
prepared state iff willing to commit.

 Every RM tries to get its value accepted by a majority set of acceptors
 Each RM is the first proposer in its own instance of paxos

The Leader

 Coordinates the commit algorithm
 All instance of Paxos share the same leader
 Assumed always defined and unique.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

18

The Acceptors

 All the instances of paxos share the same set A of acceptors

 2F+1 acceptors involved in order to achieve tolerance to F failures

 Each acceptor keeps track of its own progress

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

19

Phase Messages:

A process that believes itself to be a newly elected leader initiates a ballot, which proceeds in the following phases.

• Phase 1a. The leader chooses a ballot number bal for which it is the leader and sends a phase 1a message for
ballot number bal to every acceptor.

• Phase 1b. When an acceptor receives the phase 1a message for ballot number bal, it responds
—The largest ballot number for which it received a phase 1a message
—The phase 2b message with the highest ballot number it has sent.

• Phase 2a. When the leader has received a phase 1b message for ballot number bal,
—Free : None of the majority of acceptors reports having sent a phase 2b message, so the algorithm has not yet
chosen a value.
—Forced: Some acceptor in the majority reports having sent a phase 2b message.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

20

• Phase 2b. When an acceptor receives a phase 2a message for a value v and ballot number bal, it accepts that
message and sends a phase 2b message to the leader. The acceptor ignores the message if it has already
participated in a higher-numbered ballot.

• Phase 3. When the leader has received phase 2b messages for value v and ballot bal from a majority of the
acceptors, it knows that the value v has been chosen and communicates that fact to all interested processes
with a phase 3 message.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

21

Paxos Commit Algorithm

RM decides to prepare and sends a BeginCommit message
to the leader.

The leader then sends a Prepare message to all the other
RMs.

If an RM wants to prepare, it sends a phase 2a message
with value Prepared and ballot number 0 in its instance of
the Paxos algorithm. Otherwise, it sends a phase 2a
message with the value Aborted and ballot number 0.

Acceptor sends its phase 2b message to the leader.

The leader knows the outcome of this instance if it
receives majority of phase 2b messages for ballot number
0, then it can send its phase 3 message announcing the
outcome to the RMs.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

22

Cost of paxos commit

—The first RM to prepare sends a BeginCommit message to the leader. (1 message)

—The leader sends a Prepare message to every other RM. (N − 1 messages)

—Each RM sends a ballot 0 phase 2a Prepared message for its instance of Paxos to the F + 1 acceptors.
(N(F + 1) messages)

—For each RM’s instance of Paxos, an acceptor responds to a phase 2a message by sending a phase 2b
Prepared message to the leader. However, an acceptor can bundle the messages for all those instances
into a single message. (F+1 messages)

—The leader sends a single Commit message to each RM containing a phase 3 Prepared message for
every instance of Paxos. (N messages)

Therefore a total of (N+1)(F+3)-4 messages are sent

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

23

Co-location

For Two-Phase Commit, colocation means that the initiating RM and the TC are on the same node.

For Paxos Commit, it means that each acceptor is on the same node as an RM, and that the initiating RM is the
on the same node as the initial leader. In Paxos Commit without colocation, we assume that the initial leader is
an acceptor.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

24

Fast Paxos
We can eliminate phase 3 of Paxos by having each acceptor send its phase 2b messages directly
to all the RMs. This allows the RMs to learn the outcome in only four message delays, but a total
of N(2F+3) messages are required.

Letting the leader be on the same node as an acceptor eliminates one of those messages. If each
acceptor is on the same node as an RM, and the leader is on the same node as the first RM, then
the initial BeginCommit message, F + 1 of the phase 2a messages, and F + 1 of the phase 2b
messages

can be discounted, leaving (N − 1)(2F + 3) messages.

25

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

Paxos versus Two Phase Commit

Two Phase Commit Paxos Commit

TM makes both commit/abort decision and stores
on stable storage

Uses acceptors’ stable storage and replaces TM by a
series of leaders

Two Phase Commit can block indefinitely if TM fails Paxos doesn’t blocks indefinitely if a leader fails.

TM can unilaterally decide to abort The leader can make abort decision only for an RM.

Two Phase commit will abort if any RM aborts Paxos commit only requires Phase 2b from a
majority of acceptors i.e. 2F+1.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

26

Transaction Creation and Registration

In a real system transaction commit may have to dynamically allocate RM. To accommodate a
dynamic set of RMs, we introduce a registrar process that keeps track of what RMs have joined
the transaction.

Paxos Commit runs a separate instance of the Paxos consensus algorithm to decide upon the
registrar’s input, using the same set of acceptors.

The registrar is generally on the same node as the initial leader, which is typically on the same
node as the RM that creates the transaction. In Two-Phase Commit, the registrar’s function is
usually performed by the TM rather than by a separate process.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

27

Transaction Creation

Each node has a local transaction service that an RM can call to create and manage transactions.

To create a transaction, the service constructs a descriptor for the transaction, consisting of a
unique identifier (uid) and the names of the transaction’s coordinator processes.

The coordinator processes are all processes other than the RMs that take part in the commit
protocol—namely, the registrar, the initial leader, the other possible leaders, and the acceptors.

The descriptor tells the process the names of the coordinators that it must know to perform its
role in the protocol.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

28

Joining a Transaction
An RM joins a transaction by sending a join message to the registrar.

The RM that creates the transaction sends the descriptor to any other RM that might want to
join the transaction.

Upon receipt of a join message, the registrar adds the RM to the set of participating RMs and
sends it an acknowledgment.

Receipt of the acknowledgment tells the RM that it is a participant of the transaction.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

29

Committing a Transaction
When an RM wants to commit the transaction, it sends a BeginCommit message to the registrar
rather than to the initial leader. (In Two-Phase Commit, the BeginCommit message is the
Prepared message of the first RM to enter the prepared state.)

The registrar then sends the Prepare messages to the other RMs that have joined the
transaction. The registrar no longer allows RMs to join the transaction, responding to any
subsequent join message with a negative acknowledgment.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

30

Conclusion
Two phase commit is classical transaction commit protocol. It not fault tolerant because it uses a
single coordinator whose failure can cause the protocol to block.

Paxos uses multiple coordinators and makes progress if majority of them are working.

In the normal, failure-free case, Paxos Commit requires one more message delay than Two-Phase
Commit. This extra message delay is eliminated by Faster Paxos Commit, which has the theoretically
minimal message delay for a nonblocking protocol.

The assumptions made for a nonblocking system cannot be implemented in a purely asynchronous
system.

In modern local area networks, messages are cheap, and the cost of writing to stable storage can be
much larger than the cost of sending messages. So in many systems, the Consensus on Transaction
Commit benefit of a nonblocking protocol should outweigh the additional cost of Paxos Commit.

The stronger definition of transaction commit is not implementable in typical transaction systems,
where occasional long communication delays must be tolerated.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006

31

