
Distributed Database Systems
(ECS - 265)

Staring into the Abyss : An Evaluation of Concurrency
Control with One Thousand Cores

Presented By

Sanjat Mishra

10.09.2018

1

2 Road Map

 What this paper is about?

 What problems does it address?

 What methods does this paper use to draw its conclusions?

 What criteria does this paper consider while drawing the
conclusion?

2

3 What’s this paper about?

States the problems that todays Database Management
System will face when paired with with a ‘many-core’
system.

3

Why are we talking about a
thousand core system?

4

Right now, Multi Core systems are the only way of increasing the
computing power required to carry out large scale operations!

What’s a Concurrency
Control Problem?

It is the coordination of the simultaneous executions
of transactions in a multi user database.

Problems that emerge without concurrency control:

 Lost Update

 Uncommitted Data

 Inconsistent Retrieval

5

Methodology
Adopted in
the paper

6
CHOOSES

WORKLOADS OR TEST
DATABASES. (OLTP IN

THIS CASE)

PERFORMS AN
EVALUATION OF 7
CONCURRENCY

CONTROL SCHEMES.

USES A SIMULATOR
TO BENCHMARK

PERFORMANCES ON A
‘MANY-CORE’

MACHINE AND THEN
SCALES IT TO A

THOUSAND CORE
MACHINE.

Online Transaction
Processing (OLTP)

The OLTP system supports that part of an application that interacts with the
end users.

Features of OLTP Transactions :

1. They are short lived

2. They touch only a small subset of data during index look ups

3. They are repetitive

7

ACID Properties8

Atomicity – Either
the entire

transaction takes
place at once or

doesn’t happen at
all.

Consistency – The
integrity

constraints of a DB
must be me so that
the DB is consistent
before and after a

transaction.

Isolation – Ensures
multiple

transactions can
occur concurrently
without leading to

inconsistency.

Durability –
Ensures that once

transaction is done,
the updates are

stored and written
to the disk and

persist even when
system fails.

Concurrency
Control
Schemes

9

Two Phase
Locking (2PL)

DL_DETECT

NO_WAIT

WAIT_DIE

Timestamp
Ordering (T/O)

TIMESTAMP

MVCC

OCC

H-STORE

10

Two Phase Locking (2PL) 10

Transactions have to acquire locks for an element in the DB
before they are allowed to execute a read or write on that
element.

The Database maintains the lock for each tuple or a higher
logical level.

Ownership of locks is governed by the following rules;

1. Different transactions can’t simultaneously hold
conflicting locks.

2. Once a transaction surrenders ownership of a lock, it can
never obtain new locks.

11 Phases of 2PL11

GrowingGrowing

Growing Phase
• The Transaction can acquire as

many locks as it wants to
without releasing locks.

Growing Phase
• The Transaction can acquire as

many locks as it wants to
without releasing locks.

ShrinkingShrinking

Shrinking Phase
• The Transaction enters the

shrinking phase after it releases
locks. Here, it is prohibited from
obtaining more locks.

Shrinking Phase
• The Transaction enters the

shrinking phase after it releases
locks. Here, it is prohibited from
obtaining more locks.

12Types of Two Phase
Locking

1. 2PL with Deadlock Detection
(DL_DETECT)

The DBMS monitors a waits-for graph for
cycles.

If a cycle is detected, this means there’s a
deadlock between those processes.

When a deadlock is found, the system must
choose which transaction to abort.

Usually a transaction with lesser number of
resources is aborted first.

12

13 Types of Two Phase Locking13

2. 2PL with Non-Waiting Deadlock Prevention
(NO_WAIT)

This scheme aborts a transaction if a
deadlock is suspected.

When a lock request is denied, the scheduler
automatically aborts the transaction

requesting the lock.

14 Types of Two Phase
Locking

14

3. 2PL with Waiting Deadlock
Prevention (WAIT_DIE)

This is a non pre-emptive variation
of the NO_WAIT scheme.

Here, each transaction needs to
acquire a timestamp before execution.

The execution is based on
timestamp ordering and helps prevent
deadlocks.

In case of a deadlock, the younger
of the transactions is aborted.

15 Timestamp Ordering (T/O)

Assigns a time stamp to every transaction and generates a serialization
order a priori . The DBMS then enforces this order.

DBMS solves conflicts in the proper order of timestamp.

Broad way of categorizing the various schemes under T/O :

1. How the DBMS checks for conflicts?

2. When the DBMS checks for conflicts?

15

16

Basic T/O
(TIMESTAMP)

16

In this method, the read operation always creates a
copy of the tuple before it reads and only reads the

copy.

In this method, the read operation always creates a
copy of the tuple before it reads and only reads the

copy.

If the timestamp of the new operation is lower than
the timestamp of the previous operation on the same

tuple, then the new operation has to be aborted.

If the timestamp of the new operation is lower than
the timestamp of the previous operation on the same

tuple, then the new operation has to be aborted.

Every time a transaction updates a tuple in the
database, it checks the timestamp of the previous

operation on the same tuple.

Every time a transaction updates a tuple in the
database, it checks the timestamp of the previous

operation on the same tuple.

17

Multi version Concurrency Control (MVCC) 17

In this scheme, every write operation creates a new version
of the tuple in the database.

Each version of the tuple is tagged with the timestamp and
transaction id of the transaction that created it.

The DBMS maintains an internal list of the versions of an
element.

For a Read operation, the DBMS determines which version
of the element is to be accessed by checking the
timestamp.

18Optimistic Concurrency
Control (OCC)

In this scheme, the DBMS tracks the read/write sets of
each transaction and stores all of the “write”
operations in a separate workspace.

When a transaction commits, the system checks and
determines whether the transactions read set overlaps
with any operation in the write set.

18

19

T/O with
Partition
Level
Locking
(H-STORE)

19

In this scheme, the database is divided into
disjoint sets of memory called partitions.
In this scheme, the database is divided into
disjoint sets of memory called partitions.

Each partition is protected by a lock and is
assigned a single threaded execution engine
that has exclusive access to the partition.

Each partition is protected by a lock and is
assigned a single threaded execution engine
that has exclusive access to the partition.

A transaction needs to have all the locks of all
the partitions that it needs to access before it
is allowed to start running.

A transaction needs to have all the locks of all
the partitions that it needs to access before it
is allowed to start running.

Hence, the DBMS needs to know before hand
about which transactions access which
partitions.

Hence, the DBMS needs to know before hand
about which transactions access which
partitions.

20Test Set up

1. Graphite Simulator

 Simulator for large scale multi core systems.

 Can scale to 1024 cores.

 The target architecture is a tiled chip multi
processor where each tile contains a low
power in order processing core.

2. Custom DBMS

 Custom lightweight DB.

 Number of worker threads = Number of
cores , where each thread is mapped to a
separate core.

20

21

Some Useful Terms 21

 USEFUL WORK : The time that the transaction is actually
executing application logic and operating on tuples.

 ABORT : Overhead incurred when DBMS rolls back all of
the changes made by a transaction.

 TS ALLOCATION : Time taken to allocate the timestamp
from centralized allocator.

 INDEX : The time that the transaction spends in hash
index for tables.

 WAIT : The total amount of time the transaction has to
wait (either for a lock or for a value that’s not ready yet)

 MANAGER : The time that the transaction spends in lock
manager or the timestamp. (Excludes wait time)

22

Workloads 22

1. Yahoo Cloud Serving Benchmark (YCSB)

 Collection of workloads that are representative of large scale
services

 20GB YCSB database containing one table and 20 million records.

 Single primary key column and DBMS creates a single hash index
for the primary key.

 Each transaction by default access 16 records at a time. (Read or
Write)

 Uses a term theta to determine level of contention

• When Theta = 0, all tuples are accessed with same frequency.

• When Theta = 0.6, a hotspot of 10% of tuples are accessed by
40% of the transactions.

• When Theta = 0.8, a hotspot of 10% of tuples are accessed by
60% of the transactions.

23

Workloads 23

1. TPC-C

 Current industry standard for evaluating performance of
OLTP systems

 Consists of 9 tables that simulate a warehouse centric
order processing application.

 Has 5 different types of transactions (only New Order
and Payment are modeled in this paper)

24Simulator vs Real
Hardware

 The graph shows that the simulator
generates results that are comparable
to the Real Hardware.

 The trends of MVCC , TIMESTAMP and
OCC are a bit different.

 After 32 cores, the both T/O based and
WAIT_DIE schemes drop due to cross-
core communication and timestamp
allocation overhead.

24

25 General Optimizations

1. Memory Allocation

While scaling DBMS to large core counts, DBMS spends most of the time in
waiting for memory allocation.

Hence a new malloc function was developed which assigns each thread its own
memory pool and then resizes the pool according to the workload.

2. Lock Table

This is a key contention point in DBMS. Instead of having a centralized lock table
or timestamp manager, each transaction latches on to the tuple it needs.

3. Mutexes

Accessing a mutex lock is expensive and requires several messages to be sent
across the chip. Reduces scalability.

25

26 Scalable Two Phase Locking26

Deadlock Detection

The main bottle neck occurs when multiple threads
compete to understand their waits-for graph and
detect cycles.

By partitioning the data structures across cores and
making the deadlock detector lock free , each core
has its own local copy and doesn’t need to wait.

Lock Thrashing

Even with improved detection, the DL_DETECT doesn’t
scale due to thrashing. This occurs when a transaction
holds its lock until it commits, blocking all other
concurrent transactions that need the same lock.

This becomes a bottleneck in most 2PL schemes.

27 Solution to Lock Thrashing

 Lock thrashing can be solved by aborting some transaction that are
waiting to acquire locks.

 This can reduce the number of active transaction at a particular time.

 Ideally, setting a timeout helps the system run at optimal throughput.
The timeout threshold varies cases to case.

 Restarting a transaction is relatively faster than rolling back and
performing the changes again.

 Trade off between performance and transaction abort rate.

27

28 Scalable Timestamp Ordering

Timestamp Allocation

Using mutexes for timestamp allocation increases the duration and decreases
scalability.

One solution is to use atomic addition operation to advance a global timestamp.
This requires fewer instructions and is faster since the critical sector is locked
down for a smaller period.

But this is still insufficient for a 1000-core CPU.

Other methods that can work:

 Atomic Addition with batching.

 CPU Clocks

 Hardware Counters

28

29Comparing
Timestamp
Allocation Methods

 Mutex performs the worst.

 Throughput of atomic
addition reduces with
increasing number of
cores.

 Batching suffers from
contention after a point.

 CPU Clock is the ideal
candidate as its
decentralized.

29

30Comparing Timestamp
Allocation Methods on
Workload

 When there’s no contention, the results
are almost similar.

 When there’s contention, transaction
have to restart and hence performance
depreciates.

30

31 Distributed Validation

 This is specifically meant for OCC where there is a critical section after
the read phase.

 Normally, mutexes are used to protect the critical section but this
decreases scalability.

 Instead, using per tuple validation that breaks the operation into smaller
fragments is faster.

31

32 Local Partitions

This scheme is meant for H-STORE . By enhancing H-STORE to use the
shared memory effectively, scalability is achievable.

By giving direct data access to transactions for remote partitions, overhead
decreases .

The read only tables don’t create additional copies and hence reduces
memory footprint.

32

33 Experimental Analysis

The experiment done can be grouped into 2 categories:

 Based on Scalability

 Based on Sensitivity to Data changes

Scalability experiment tells us how well the model performs when the
number of cores increases.

The Sensitivity experiment tells us how well the model handles changes to
data or more complicated transaction scenarios.

33

34Read Only
Workload

 The Read only arrangement
provides a benchmark
before moving to more
complex arrangements.

 In a perfectly scalable case,
linear increase should be
present.

 Timestamp allocation bottle
necks the related schemes.

 OCC and TIMESTAMP waste
cycles while making copies
of data to be read.

34

35 Write Intensive
Workload (Medium
Contention)

35

 Large size of the workload means
contention can vary and may be less.

 Hence, we introduce the “theta”
factor to reflect real world data which
has high contention chances.

 NO_WAIT and WAIT_DIE alone scale
past 512 cores.

 DL_DETECT spends most time in
waiting.

 OCC spends large portion in aborting.

 MVCC and TIMESTAMP perform good
as they overlap operations and
reduce waiting time.

36 Write Intensive
Workload (High
Contention)

36

 When high contention, all of the
schemes fail to scale.

 Due to higher number of conflicts,
most of the time is spent in
aborting transactions or waiting for
lock release.

37Sensitivity to
Contention

 With increase in theta
value, the schemes
virtually become non-
scalable.

 Increase in the number of
cores stops to matter.

37

38Working Set Size

 Working set is the number of records the
transactions need to access.

 When the working set size increases, the
chances of contention also increase.

 Shorter Transactions lead to higher through put
as contention chances decrease.

 When short transactions, DL_DETECT and
NO_WAIT have best throughputs.

 With increase in size, thrashing also increases.

 When transactions are small, T/O schemes
suffer because cost of timestamp is high.

 This later gets amortized and they scale better.

38

39Read/Write
Mixture

 MVCC performs best
consistently.

 TIMESTAMP suffers due to
copy overhead.

39

40Database Partitioning

 When the database is partitioned and
cores are assigned, H-STORE initially
performs the best.

 This approach is best when the data to
be accessed is split across less number
of partitions.

 With increase in number of partitions,
every scheme suffers.

40

41TPC-C Workload
(4- Warehouses)

 More worker threads than
warehouses.

 Cross core communication takes
place.

 All schemes fail to scale when
there are few warehouses than
cores.

 H-STORE isn’t optimal as data is
scattered across multiple
partitions.

 2PL schemes suffer from thrashing.

 T/O experiences high abort rates
but outperforms others as Reads
aren’t blocked by Writes.

41

42TPC-C Workload
(1024 Warehouses)

 Here, number of warehouses
= number of cores.

 Even if there is no contention,
bottleneck is maintaining and
assigning locks and
Timestamp Allocation.

 MVCC suffers from write
overheads.

 OCC suffers from acquiring
latches.

 Performance only better in
Payment as bottle neck is
eliminated.

42

43Conclusion

 Every scheme suffers from
bottle necks under
different scenarios.

 No scheme is ideal for real
world application when
number of cores are high.

 Extra cores are never
utilized to their full
potential.

43

	Slide 1
	Road Map
	What’s this paper about?
	Why are we talking about a thousand core system?
	What’s a Concurrency Control Problem?
	Methodology Adopted in the paper
	Online Transaction Processing (OLTP)
	ACID Properties
	Concurrency Control Schemes
	Two Phase Locking (2PL)
	Phases of 2PL
	Types of Two Phase Locking
	Types of Two Phase Locking
	Types of Two Phase Locking
	Timestamp Ordering (T/O)
	Basic T/O (TIMESTAMP)
	Multi version Concurrency Control (MVCC)
	Optimistic Concurrency Control (OCC)
	T/O with Partition Level Locking (H-STORE)
	Test Set up
	Some Useful Terms
	Workloads
	Workloads
	Simulator vs Real Hardware
	General Optimizations
	Scalable Two Phase Locking
	Solution to Lock Thrashing
	Scalable Timestamp Ordering
	Comparing Timestamp Allocation Methods
	Comparing Timestamp Allocation Methods on Workload
	Distributed Validation
	Local Partitions
	Experimental Analysis
	Read Only Workload
	Write Intensive Workload (Medium Contention)
	Write Intensive Workload (High Contention)
	Sensitivity to Contention
	Working Set Size
	Read/Write Mixture
	Database Partitioning
	TPC-C Workload (4- Warehouses)
	TPC-C Workload (1024 Warehouses)
	Conclusion

