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2 Road Map

 What this paper is about?

 What problems does it address?

 What methods does this paper use to draw its conclusions?

 What criteria does this paper consider while drawing the 
conclusion?
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3 What’s this paper about?

States the problems that todays Database Management 
System will face when paired with with a ‘many-core’ 
system.
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Why are we talking about a 
thousand core system?
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Right now, Multi Core systems are the only way of increasing the 
computing power required to carry out large scale operations!



What’s a Concurrency 
Control Problem?

It is the coordination of the simultaneous executions 
of transactions in a multi user database.

Problems that emerge without concurrency control:

 Lost Update

 Uncommitted Data

 Inconsistent Retrieval
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Methodology 
Adopted in 
the paper

6
CHOOSES 

WORKLOADS OR TEST 
DATABASES. (OLTP IN 

THIS CASE)

PERFORMS AN 
EVALUATION OF 7 
CONCURRENCY 

CONTROL SCHEMES.

USES A SIMULATOR 
TO BENCHMARK 

PERFORMANCES ON A 
‘MANY-CORE’ 

MACHINE AND THEN 
SCALES IT TO A 

THOUSAND CORE 
MACHINE.



Online Transaction 
Processing (OLTP)

The OLTP system supports that part of an application that interacts with the 
end users.

Features of OLTP Transactions :

1. They are short lived

2. They touch only a small subset of data during index look ups

3. They are repetitive 
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ACID Properties8

Atomicity – Either 
the entire 

transaction takes 
place at once or 

doesn’t happen at 
all.

Consistency – The 
integrity 

constraints of a DB 
must be me so that 
the DB is consistent 
before and after a 

transaction.

Isolation – Ensures 
multiple 

transactions can 
occur concurrently 
without leading to 

inconsistency.

Durability – 
Ensures that once 

transaction is done, 
the updates are 

stored and written 
to the disk and 

persist even when 
system fails.



Concurrency 
Control 
Schemes
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Two Phase 
Locking (2PL)

DL_DETECT

NO_WAIT

WAIT_DIE

Timestamp 
Ordering (T/O)

TIMESTAMP

MVCC

OCC

H-STORE



10

Two Phase Locking (2PL) 10

Transactions have to acquire locks for an element in the DB 
before they are allowed to execute a read or write on that 
element.

The Database maintains the lock for each tuple or a higher 
logical level.

Ownership of locks is governed by the following rules;

1. Different transactions can’t simultaneously hold 
conflicting locks.

2. Once a transaction surrenders ownership of a lock, it can 
never obtain new locks.



11 Phases of 2PL11

GrowingGrowing

Growing Phase
• The Transaction can acquire as 

many locks as it wants to 
without releasing locks.

Growing Phase
• The Transaction can acquire as 

many locks as it wants to 
without releasing locks.

ShrinkingShrinking

Shrinking Phase
• The Transaction enters the 

shrinking phase after it releases 
locks. Here, it is prohibited from 
obtaining more locks.

Shrinking Phase
• The Transaction enters the 

shrinking phase after it releases 
locks. Here, it is prohibited from 
obtaining more locks.



12Types of Two Phase 
Locking

1. 2PL with Deadlock Detection 
(DL_DETECT)

The DBMS monitors a waits-for graph for 
cycles.

If a cycle is detected, this means there’s a 
deadlock between those processes.

When a deadlock is found, the system must 
choose which transaction to abort.

Usually a transaction with lesser number of 
resources is aborted first.
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13 Types of Two Phase Locking13

2. 2PL with Non-Waiting Deadlock Prevention 
(NO_WAIT)

This scheme aborts a transaction if a 
deadlock is suspected.

When a lock request is denied, the scheduler 
automatically aborts the transaction 

requesting the lock.



14 Types of Two Phase 
Locking 

14

3. 2PL with Waiting Deadlock 
Prevention (WAIT_DIE)

This is a non pre-emptive variation 
of the NO_WAIT scheme.

Here, each transaction needs to 
acquire a timestamp before execution.

The execution is based on 
timestamp ordering and helps prevent 
deadlocks.

In case of a deadlock, the younger 
of the transactions is aborted.



15 Timestamp Ordering (T/O)

Assigns a time stamp to every transaction and generates a serialization 
order a priori . The DBMS then enforces this order.

DBMS solves conflicts in the proper order of timestamp.

Broad way of categorizing the various schemes under T/O :

1. How the DBMS checks for conflicts?

2. When the DBMS checks for conflicts?
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16

Basic T/O 
(TIMESTAMP)

16

In this method, the read operation always creates a 
copy of the tuple before it reads and only reads the 

copy.

In this method, the read operation always creates a 
copy of the tuple before it reads and only reads the 

copy.

If the timestamp of the new operation is lower than 
the timestamp of the previous operation on the same 

tuple, then the new operation has to be aborted.

If the timestamp of the new operation is lower than 
the timestamp of the previous operation on the same 

tuple, then the new operation has to be aborted.

Every time a transaction updates a tuple in the 
database, it checks the timestamp of the previous 

operation on the same tuple.

Every time a transaction updates a tuple in the 
database, it checks the timestamp of the previous 

operation on the same tuple.
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Multi version Concurrency Control (MVCC) 17

In this scheme, every write operation creates a new version 
of the tuple in the database.

Each version of the tuple is tagged with the timestamp and 
transaction id of the transaction that created it.

The DBMS maintains an internal list of the versions of an 
element.

For a Read operation, the DBMS determines which version 
of the element is to be accessed by checking the 
timestamp.



18Optimistic Concurrency 
Control (OCC)

In this scheme, the DBMS tracks the read/write sets of 
each transaction and stores all of the “write” 
operations in a separate workspace.

When a transaction commits, the system checks and 
determines whether the transactions read set overlaps 
with any operation in the write set.
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19

T/O with 
Partition 
Level 
Locking 
(H-STORE)

19

In this scheme, the database is divided into 
disjoint sets of memory called partitions.
In this scheme, the database is divided into 
disjoint sets of memory called partitions.

Each partition is protected by a lock and is 
assigned a single threaded execution engine 
that has exclusive access to the partition.

Each partition is protected by a lock and is 
assigned a single threaded execution engine 
that has exclusive access to the partition.

A transaction needs to have all the locks of all 
the partitions that it needs to access before it 
is allowed to start running.

A transaction needs to have all the locks of all 
the partitions that it needs to access before it 
is allowed to start running.

Hence, the DBMS needs to know before hand 
about which transactions access which 
partitions.

Hence, the DBMS needs to know before hand 
about which transactions access which 
partitions.



20Test Set up

1. Graphite Simulator 

 Simulator for large scale multi core systems.

 Can scale to 1024 cores.

 The target architecture is a tiled chip multi 
processor where each tile contains a low 
power in order processing core.

2. Custom DBMS

 Custom lightweight DB.

 Number of worker threads  = Number of 
cores , where each thread is mapped to a 
separate core.
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Some Useful Terms 21

 USEFUL WORK : The time that the transaction is actually 
executing application logic and operating on tuples.

 ABORT : Overhead incurred when DBMS rolls back all of 
the changes made by a transaction.

 TS ALLOCATION : Time taken to allocate the timestamp 
from centralized allocator.

 INDEX : The time that the transaction spends in hash 
index for tables.

 WAIT : The total amount of time the transaction has to 
wait (either for a lock or for a value that’s not ready yet)

 MANAGER : The time that the transaction spends in lock 
manager or the timestamp. (Excludes wait time)
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Workloads 22

1. Yahoo Cloud Serving Benchmark (YCSB)

 Collection of workloads that are representative of large scale 
services

 20GB YCSB database containing one table and 20 million records.

 Single primary key column and DBMS creates a single hash index 
for the primary key.

 Each transaction by default access 16 records at a time. (Read or 
Write)

 Uses a term theta to determine level of contention

• When Theta = 0, all tuples are accessed with same frequency.

• When Theta = 0.6, a hotspot of 10% of tuples  are accessed by 
40% of the transactions.

• When Theta = 0.8, a hotspot of 10% of tuples are accessed by 
60% of the transactions.
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Workloads 23

1. TPC-C

 Current industry standard for evaluating performance of 
OLTP systems

 Consists of 9 tables that simulate a warehouse centric 
order processing application.

 Has 5 different types of transactions (only New Order 
and Payment are modeled in this paper)



24Simulator vs Real 
Hardware

 The graph shows that the simulator 
generates results that are comparable 
to the Real Hardware.

 The trends of MVCC , TIMESTAMP and 
OCC are a bit different.

 After 32 cores, the both T/O based and 
WAIT_DIE schemes drop due to cross-
core communication and timestamp 
allocation overhead.
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25 General Optimizations

1. Memory Allocation

While scaling DBMS to large core counts, DBMS spends most of the time in 
waiting for memory allocation.

Hence a new malloc function was developed which assigns each thread its own 
memory pool and then resizes the pool according to the workload.

2. Lock Table

This is a key contention point in DBMS. Instead of having a centralized lock table 
or timestamp manager, each transaction latches on to the tuple it needs.

3. Mutexes

Accessing a mutex lock is expensive and requires several messages to be sent 
across the chip. Reduces scalability.
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26 Scalable Two Phase Locking26

Deadlock Detection 

The main bottle neck occurs when multiple threads 
compete to understand their waits-for graph and 
detect cycles.

By partitioning the data structures across cores and 
making the deadlock detector lock free , each core 
has its own local copy and doesn’t need to wait.

Lock Thrashing

Even with improved detection, the DL_DETECT doesn’t 
scale due to thrashing. This occurs when a transaction 
holds its lock until it commits, blocking all other 
concurrent transactions that need the same lock.

This becomes a bottleneck in most 2PL schemes. 



27 Solution to Lock Thrashing

 Lock thrashing can be solved by aborting some transaction that are 
waiting to acquire locks.

 This can reduce the number of active transaction at a particular time.

 Ideally, setting a timeout helps the system run at optimal throughput. 
The timeout threshold varies cases to case.

 Restarting a transaction is relatively faster than rolling back and 
performing the changes again.

 Trade off between performance and transaction abort rate.
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28 Scalable Timestamp Ordering

Timestamp Allocation

Using mutexes for timestamp allocation increases the duration and decreases 
scalability.

One solution is to use atomic addition operation to advance a global timestamp. 
This requires fewer instructions and is faster since the critical sector is locked 
down for a smaller period. 

But this is still insufficient for a 1000-core CPU.

Other methods that can work:

 Atomic Addition with batching.

 CPU Clocks

 Hardware Counters

28



29Comparing 
Timestamp 
Allocation Methods

 Mutex performs the worst.

 Throughput of atomic 
addition reduces with 
increasing number of 
cores.

 Batching suffers from 
contention after a point.

 CPU Clock is the ideal 
candidate as its 
decentralized.
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30Comparing Timestamp 
Allocation Methods on 
Workload

 When there’s no contention, the results 
are almost similar.

 When there’s contention, transaction 
have to restart and hence performance 
depreciates.
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31 Distributed Validation

 This is specifically meant for OCC where there is a critical section after 
the read phase.

 Normally, mutexes are used to protect the critical section but this 
decreases scalability.

 Instead, using per tuple validation that breaks the operation into smaller 
fragments is faster.
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32 Local Partitions

This scheme is meant for H-STORE . By enhancing H-STORE to use the 
shared memory effectively, scalability is achievable. 

By giving direct data access to transactions for remote partitions, overhead 
decreases .

The read only tables don’t create additional copies and hence reduces 
memory footprint.
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33 Experimental Analysis

The experiment done can be grouped into 2 categories:

 Based on Scalability

 Based on Sensitivity to Data changes

Scalability experiment tells us how well the model performs when the 
number of cores increases.

The Sensitivity experiment tells us how well the model handles changes to 
data or more complicated transaction scenarios.
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34Read Only 
Workload

 The Read only arrangement 
provides a benchmark 
before moving to more 
complex arrangements.

 In a perfectly scalable case, 
linear increase should be 
present.

 Timestamp allocation bottle 
necks the related schemes.

 OCC and TIMESTAMP waste 
cycles while making copies 
of data to be read.
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35 Write Intensive 
Workload (Medium 
Contention)

35

 Large size of the workload means 
contention can vary and may be less.

 Hence, we introduce the “theta” 
factor to reflect real world data which 
has high contention chances.

 NO_WAIT and WAIT_DIE alone scale 
past 512 cores.

 DL_DETECT spends most time in 
waiting.

 OCC spends large portion in aborting.

 MVCC and TIMESTAMP perform good 
as they overlap operations and 
reduce waiting time.



36 Write Intensive 
Workload (High 
Contention)

36

 When high contention, all of the 
schemes fail to scale.

 Due to higher number of conflicts, 
most of the time is spent in 
aborting transactions or waiting for 
lock release.



37Sensitivity to 
Contention

 With increase in theta 
value, the schemes 
virtually become non-
scalable.

 Increase in the number of 
cores stops to matter.
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38Working Set Size

 Working set is the number of records the 
transactions need to access.

 When the working set size increases, the 
chances of contention also increase.

 Shorter Transactions lead to higher through put 
as contention chances decrease.

 When short transactions, DL_DETECT and 
NO_WAIT have best throughputs.

 With increase in size, thrashing also increases.

 When transactions are small, T/O schemes 
suffer because cost of timestamp is high.

 This later gets amortized and they scale better.
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39Read/Write 
Mixture

 MVCC performs best 
consistently.

 TIMESTAMP suffers due to 
copy overhead.
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40Database Partitioning

 When the database is partitioned and 
cores are assigned, H-STORE initially 
performs the best.

 This approach is best when the data to 
be accessed is split across less number 
of partitions.

 With increase in number of partitions, 
every scheme suffers.
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41TPC-C Workload 
(4- Warehouses)

 More worker threads than 
warehouses.

 Cross core communication takes 
place.

 All schemes fail to scale when 
there are few warehouses than 
cores.

 H-STORE isn’t optimal as data is 
scattered across multiple 
partitions.

 2PL schemes suffer from thrashing.

 T/O experiences high abort rates 
but outperforms others as Reads 
aren’t blocked by Writes.
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42TPC-C Workload 
(1024 Warehouses)

 Here, number of warehouses 
= number of cores.

 Even if there is no contention, 
bottleneck is maintaining and 
assigning locks and 
Timestamp Allocation.

 MVCC suffers from write 
overheads.

 OCC suffers from acquiring 
latches.

 Performance only better in 
Payment as bottle neck is 
eliminated.
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43Conclusion

 Every scheme suffers from 
bottle necks under 
different scenarios.

 No scheme is ideal for real 
world application when 
number of cores are high.

 Extra cores are never 
utilized to their full 
potential.
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