
Zyzzyva:  
 Speculative Byzantine Fault Tolerance

R. Kotla, L. Alvisi, M.Dahlin, A. Clement, E. Wong
Sajjad Rahnama, November 1st

 1

Agenda
• Introduction
• Zyzzyva System Model
• Protocol Overview
• Node State and Checkpoints
• Agreement Protocol
• View Change
• Correctness

• Safety
• Liveness

 2

Introduction

Byzantine Fault State Machine Replication

Byzantine Fault Tolerant State Machine Replication

 3

Introduction

PBFT
Practical Byzantine Fault Tolerant Protocol

• 3F+1 node
• Can Tolerate f faulty node
• 3 Phase
• Pre-Prepare, Prepare, Commit
• 4 One-way messages

 4

Introduction

PBFT
Practical Byzantine Fault Tolerant Protocol

Make sure that I didn’t
receive two same
sequence number

I know That nobody
receive two same
sequence number

Everyone know that nobody
receive two same sequence

number

 5

“A protocol that uses Speculation to
reduce the cost and Simplify the

design of BFT state machine
replication”

Zyzzyva
Introduction

 6

Introduction

Zyzzyva

• Speculative Execution
• Replies to the client contain Sufficient history

Speculative
Response

History

History and response
are Stable?

yes

No

Client uses
the reply

Wait until
converge

 7

Introduction

Zyzzyva

• Challenge is ensuring that response to the client
become stable

• Move output Commit to the client

• Clients act on request in one or two phases

 8

Introduction

Why Zyzzyva?

Cost PBFT Zyzzyva

Total Replicas 3f+1 3f+1

Replica with application state 2f+1 2f+1

Critical path 1-way Latency 4 3

 9

System Model

• Faulty nodes may behave Arbitrarily

• Faulty nodes cannot break cryptographic signs

• Messages may fail to deliver or delay

Assumptions

 10

Protocol Overview

Subprotocols

Agreement View Change

Checkpoint

 11

Protocol Overview

• Safety property as they are observed by client

• Replicas can be temporarily inconsistent

• Client detect them, drive them to convergence

• Client rely on consistent responses

• Replicas execute the orders before its Order  
Fully Stablished

Principles and Challenges

 12

Protocol Overview

Safety

f If a request with sequence number n and history hn
completes, then any request that completes with a

higher sequence number n′ ≥ n has a history hn′ that
includes hn as a prefix.

Liveness
Any request issued by a correct client eventually

completes.

 13

Protocol Overview

Client Send Request to the Primary

Protocol Communication

 14

Protocol Overview

• Primary Forwards the Request to all replicas

• Replicas Executes the request

Protocol Communication

 15

Protocol Overview

• Replicas Send Response with history to the client

• 3f+1 mutually consistent response then it is done

Protocol Communication

3f+1

Gracious execution

 16

Protocol Overview

• Some of nodes are faulty

• Client Receive between 2f+1 and 3f+1 response

Protocol Communication
Faulty nodes

2f+1

 17

Protocol Overview

• Client Gather 2f+1 response and make Commit Certificate

• Send’s commit certificate to all nodes

Protocol Communication
Faulty nodes

2f+1
2f+1

 18

Protocol Overview

• Client Respond to CC and acknowledge to the Client

• Once 2f+1 acknowledgments received client act on request

Protocol Communication
Faulty nodes

2f+12f+1 2f+1

 19

Node State and Checkpoint

Ordered History

Max Commit Certificate

Committed History

Speculative History

History of executed requests

CC seen by node with the largest seq number

History up to seq number of max commit certificate

History follows the committed history

 20

Node State and Checkpoint

• A replica constructs a checkpoint every CP_INTERVAL requests.

• Similar to other BFT protocols like PBFT

Checkpoint

Reach
checkpoint

interval

Sign and send CP
message to all

replicas

1) Highest #seq of requests
2) digest of current CP

Collect f+1 CP
message and done

 21

Node State and Checkpoint

Replica State

 22

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 1
• Client Sends Request to the Primary

• o: operation

• t: timestamp

• c: client Id

 23

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 2
• Primary receive request and assign seq number

• Forward ordered request to all primary

• v: view number

• n: sequence number

• m: client message

• d: H(m)

• hn: H(hn-1,d)

• ND: application values

 24

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 3
• Replica receive ordered Request

• Check that:

• m is wellformed and d is correct digest

• n = maxn +1

• hn = H(hn-1,d)

• Execute the request and create Spec-Response

 25

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 3

Question :What will happen to out of order Sequence numbers?

• r: reply to the operation

• i: replica id

• OR: order request

 26

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 3
Out of order Sequence numbers:

n <= maxn +1 Discard the request

n > maxn +1 The replica has some gap in its history

• Replica send Fill-Hole message to the primary

• Primary respond with order request for k ≤ n′ ≤ n

Question :What will happen if primary doesn’t answer?

 27

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 3
If primary doesn’t answer to Fill-Hole Message:

• After replica timer for fill-hole message expires replica

broadcast Fill-Hole message to all replicas

• Start view change timer

• Replicas which receive Fill-Hole message, will forward  
Order-Req of corresponding holes to sender if they already have

• If timer expires and still replica doesn’t receive Order-Reqs it

will initiate view change

 28

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4

Client Gathers Speculative Responses

• Spec-Response messages must mach following properties:

• v: view number

• n: sequence number

• c: client id

• H(r): reply digest

• hn: H(hn-1,d)

• t: request timestamps

Based on number of speculative response and OR four case could happen

 29

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4a

• Client Receive 3f+1 matching response

• It assumes that request is completed

• No acknowledgement will send to replicas

• Replicas cannot determine that request is committed

 30

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4b

• Client Receive between 2f+1 and 3f+1 matching response

• It assembles 2f+1 response as a Commit-Certificate

• Send commit message with CC to all replicas

When some of nodes are faulty:

CC is the list of all 2f+1 matching speculative responses

 31

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4b-1

• Replica receive a commit message from a client containing CC

• Replica acknowledge to the client with Local-Commit message

• Send CC to all replicas

1) It already has executed request Send Commit Local

3) Replica has holes in its history Fill the hole as previously discussed

2) It hasn’t execute request Update max sequence number and execute
operations and send Commit local message

 32

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4b-2

• Client Receive a Local Commit from a 2f+1 replica

• Assume that request is completed

• Send CC to all replicas

• It starts timer when send commit message

• If timer expires before 2f+1 one local-commit message

then it will act same as 4c step

Question :What will happen if doesn’t receive 2f+1 local-commit?

 33

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4c

• Client Receive fewer than 2f+1 matching Spec-Response

• It Resend the its request to all Replicas

• Replicas will forward client request to the primary

• A non-primary replica which receive client request

• 1) If it has cached response it will send that to client

• 2) if the sequence number is new then send  
Confirm Message to the primary

 34

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4c

• Replica send Confirm-Message to primary and ask for

Order-Request

• m is client request

• Replica start timer after sending Confirm-Message

• If primary accepts then it send response to client

• If timer expires then it will initiate view change

 35

Agreement Protocol
1

2

3

4

4d

4c

4a

4b

Step 4d

• Client receive response indicating inconsistent ordering by primary

• It sends Proof of Misbehaver to all replicas

• They will initiate view change

• Inconsistent Ordering: two spec response with valid OR and view

number and different sequence number

Proof of Misbehavior message

 36

View Change

• Elect new primary

• Must guarantee no change will happen in committed history

• The View Change sub protocol is like previous BFT’s ones

View Change Sub Protocol

 37

View Change

1

2

3

4

5

View Change step 1

• Replica Initiate view change by sending accusation to all replicas

• In previous protocols, this message would indicate that replica is no

longer participating in the current view

• This message is only a hint that a replica would like to change views

 38

1

2

3

4

5

View Change step 2

• Replica receives f+1 accusations that the primary is faulty

• Replica commits to the view change

• No longer participate in current view

• Sends view Change message to all replicas

• CC: last commit certificate

• O: ordered request since commit certificate

View Change

 39

1

2

3

4

5

View Change step 3

• Replica Receives 2f+1 view change message

• New primary will send New-View message to all replicas

• P: is collection of 2f+1 view change message

• A replica after sending view-change message starts a timer

• If replicas timer expires it initiate new view change for v+2

View Change

 40

1

2

3

4

5

View Change step 4

• Replica receives valid New-View Message

• It sends a View-Confirmation Message to all replicas

• The most recent request with a corresponding CC will be accepted

as the last committed history

• The most recent request that is ordered subsequent to the CC by

at least f+1 view-change messages will be accepted.

View Change

 41

1

2

3

4

5

View Change step 5

• New Primary receive 2f+1 View-Confirm message

• The replica will begin new view

View Change

 42

Safety

• Within a View

• 3f+1 speculative response or 2f+1 local-commit

• 1) Correct node send one speculative response

• 2) Correct node just send local commit after seeing 2f+1 speculative response

Correctness

• Show no 2 request with same sequence number

• Show if n' > n is committed then h is prefix of h'

• Across Views:

• In case 2f+1 CC message at least one correct node will send CC in their

view change message

• In case of 3f+1 spec-response every correct replica will include spec

response in their view change message
 43

Liveness

• If the request does not complete during the current view then view change will

happen

• If the request does not complete by protocol step 4c client resends request to all

replicas

• Any replica that does not receive order-req from primary will send I-Hate-Primary

• There will be f+1 I hate primary or 2f+1 spec response and view change occur or

request will complete

Correctness

• If the primary is correct

• In case of 3f+1 spec response it will immediately completes

• In case of 2f+1 spec response because at most f nodes are faulty then it
definitely receive 2f+1 local commit

 44

