
Transaction Management in the R*
Distributed Database Management Systems

!1

- C. Mohan B. Lindsay and R. Obermarck, Dec 1986

Presented By
Shivani Teegala

Oct 4th ’18 ECS 265A

OverView
‣ Introduction

• Background

• Assumptions & Terminology

• Characteristics of CP

‣ Commit Protocol

• 2P Commit Protocol

• Hierarchical 2P

• Presumed Abort

• Presumed Commit

‣ Discussion

• Performance Analysis

• Blocking and Deadlock Management

!2

Background

• R* pronounced R star, is an
experimental DDBMS
developed out of IBM San
Jose Research Laboratory

• R* is an evolution of System R
and carry forwards the DBM ,
Concurrency control and 2PL
from System R.

• Fun Fact: The * denotes Kleene
stars which means
(ε,R,RR,RRR,RRR….)

!3

!4

“What if a transaction commits at one site and rolls
back at another? Who guarantees the atomicity?”

“A distributed transaction commit protocol is required
in order to ensure either all the effects of the
transaction persist or that none of the effects persist…”

Transaction Manager

!5

- Manages the commit protocol,

- Performs local and global deadlock detection,

- Assigns transaction Ids to new transactions.

Characteristics of CP
• Always guarantee transaction atomicity

• Minimal overhead in terms of log writes and message traffic

• Optimised performance in no-failure case

• Exploitation of completely or partially read-only transaction

• Maximising the ability to perform unilateral aborts.

!6

Assumptions
• Transactions perform provisionally such that actions can

be undone if needed.

• Each DB in DDBS has a log that is used to recoverably
record the state of transaction.(UNDO/REDO log)

• Log records are written sequentially and kept in non -
volatile storage.

• Transactions and processors are assumed to have
globally unique names.

!7

Terminology

• Synchronous (Force-Write): Forced record and all
preceding ones immediately moves from virtual memory
buffers to Stable Storage.

• Important to batch force-writes for high performance.

• Asynchronous (Write): Record gets written to virtual
buffer storage and is allowed to migrate later.

!8

Two Phase Commit Protocol

“In 2P, the model of a distributed transaction execution is such
that there is one process, called the coordinator, that is

connected to the user application and a set of other processes,
called the subordinates. During the execution of the commit

protocol the subordinates communicate only with the
coordinator, not among themselves.”

!9

The ‘two phases’ of 2PC are the prepare and the commit phase.

Prepare - Coordinator

!10

- Sends prepare Statements in Parallel
- Waits for the votes from Subordinate. Either one No or All Yes Votes.

Prepare - Subordinate

!11

- Writes force prepare log
- And sends the Yes Vote
- Enters Prepare State

- Writes forced abort log
- Sends Back No Vote
- Starts unilateral abort

Commit Phase

!12

- Triggers immediately
after at least one No

Vote.
- Messages sent back

only to Sub-ordinates
who has not
responded or

responded as Yes.

- Triggers after all
votes are sent.

!13

* denotes force logs

- 2 Messages
- 2 logs(*)

- 2 Messages
- 2 Logs(1*)

Handling Failures

!14

“We assume that at each active site a recovery process exists and that it processes all
messages from recovery processes at other sites and handles all the transactions that were

executing the commit protocol at the time of the last failure of the site…”

For each transaction executing at the time of the failure the recovery process
determines whether:

• There are no 2PC protocol records of any kind, or

• 	The transaction is in either a committing or aborting state, or

• 	The transaction is in the prepared state (waiting for an outcome decision)

!15

Node No Information Prepared Log Commit/Abort Log

Coordiantor - Aborts the
transaction -

- Periodically sends
commit/Abort
msgs.

- Recovery Process
takes over and
performs normal
protocol.

Subordiante - Aborts the
transaction

- Periodically tries to
contact co-ordinator

- Recovery Process takes
over and performs
normal protocol.

- Reads the log.

- Recovery Process

takes over and
performs normal
protocol.

!16

“Why so many force-writes?”

“By forcing their commit/abort records before sending the
ACKs, the subordinates make sure that they will never be
required (while recovering from a processor failure) to ask

the coordinator about the final outcome after having
acknowledged..”

To ensure Transaction Atomicity

Hierarchical 2P

!17

Only Co-ordinator

Both Co-ordinator and Subordinate

Sub ordinate

Root

Non-root
Non-Leaf

Non-root
Non-leaf

LeafLeaf

Flow

- Root and leaf processes act as in regular 2PC.

- An intermediate node must propagate PREPAREs to its subordinates. It

can vote YES only if all of its subordinates vote YES.

- In a similar manner, on receiving an ABORT or COMMIT an intermediate
node must force-write its own commit (abort) record, send an ACK to the
coordinator, and then propagate the decision to its subordinates.

!18

Presumed Abort &
Presumed Commit

!19

Goals
• Always guarantee transaction atomicity

• Minimal overhead in terms of log writes and message
traffic

• Optimised performance in no-failure case

• Exploitation of completely or partially read-only
transaction

• Maximising the ability to perform unilateral aborts.

!20

Presumed Abort (PA)

!21

2PC — “In absence of any information ——> Abort”

This means that:
• The abort record need not be forced (both by the coordinator and each of the subordinates)
• No ACKs need to be sent by subordinates for aborts
• The coordinator need not record the names of the subordinates in the abort records, nor write an end record after an abort record.
• If the coordinator notices the failure of a subordinate while attempting to send an ABORT to it, the coordinator does not need to hand the transaction over to the

recovery process. It will let the subordinate find out about the abort when the recovery process of the subordinate’s site sends an inquiry message.

This means that —> Safe to Immediately forget a transaction if decision is abort

- 	 No Forced Abort records.

- 	 No ACKs for aborts.

- 	 No end record after an abort record.

“ The name arises from the fact that in the no information case the transaction is
presumed to have aborted, and hence the recovery process’s response to an
inquiry is an ABORT”

Read Only

!22

For Read-Only transactions it doesn’t matter, whether the transaction finally
commits or not.

Leaf Nodes
- Finds no UNDO/

Redo Logs

- Send READ VOTE

No Logs

1 Msg (Read Vote)

Non-root, Non-leaf
Nodes

- Self and all
subordinate’s are

Read Votes

- Sends READ VOTE

No Logs

1 Msg (Read Vote)

1 Msg (Prepare)

Root Node

- Coordinator is read-
only and receives

READ VOTES

- Transaction is READ

ONLY

- No need for second

No Logs

1 Msg (Prepare)

Partial - Read Only

!23

Leaf Nodes
Send YES/NO VOTE

Logs Commit*

Sends ACK

Non-root, Non-leaf Nodes

Sends Prepare

Logs Prepare*

Sends YES/NO vote

Logs Commit*

Sends Commit to Non-Read Only

Sends ACK

Logs ends

Root Node

Sends Prepare

Logs Commit*

Sends Commit to Non-Read Only

Logs End

Information in parentheses indicates under what circumstances such transitions take place. IDLE is the initial and
final state for each process

!24

State Changes and Log writes - PA

Presumed Commit

!25

Generally, Are the transactions expected to be Committed or Aborted? Commited

Makes more sense to

- ACK Aborts
- Force Abort logs by subordinates.
- Incase of No Information ——> Assume Commit

But there is a small problem with this…

What if Root Process crashes before sending commit or abort message?

Contd.

!26

Co-ordinator records information on sub-ordinates safely before sending the prepares.

— Incase the recovery process finds, collecting record and no other following it, it
force aborts and informs all subordinates and gets ACKS.

Collecting State:

PC PA
Assumed Commit Assumed Abort

Collecting State in First Phase No Collecting state
Force writes Aborts (Except root process) Force Writes Commits

ACK for Aborts ACK for Commits

Writes Commit log for read-only No logs for read only

PC (Cont.)

!27

Read Only Partial Read-Only

Leaf Sends READ VOTE

Prepare Log*

Sends Yes Vote

Commit Log

Non-Leaf Non Root
Collecting Log*

Sends Prepare

Commit Log

Sends READ VOTE

Collecting Log*

Prepare Log*

Sends Prepare

Sends Yes Vote

Commit Log

Sends Commit for Non-Read

Root
Collecting Log*

Sends Prepare

Commit Log

Collecting Log*

Sends Prepare

Commit Log*

Sends Commit for Non-Read

Information in parentheses indicates under what circumstances such transitions take
place. IDLE is the initial and final state for each process.

!28

Performance Evaluation

!29

Discussion

!30

2P PA PC

Read Only - Better -

Partial Read Only(Only
co-ordinator Updates) - Better -

Partial Read Only(With
Update Sub ordinates) - - Better

Blocking and DeadLocks

!31

“We have extended, but not implemented, PA and PC to reduce the probability
of blocking by allowing a prepared process.. ”

Process might wait for one of two reasons:

- To obtain a lock and

- To receive a message from a cohort process of the same transaction

Each DD wakes up periodically and looks for deadlocks after gathering the wait-for
information from the local DBMS and the communication manager

- To break the cycle generally a local victim is chosen.

References

!32

https://blog.acolyer.org/2016/01/11/transaction-management-in-r/

https://blog.acolyer.org/2016/01/12/presume-abort-commit/

https://people.eecs.berkeley.edu/~fox/summaries/database/rstar_trans.html

https://pdfs.semanticscholar.org/06e2/5c1f69155e53af51170c08687e1dcf272974.pdf

https://sookocheff.com/post/databases/distributed-transaction-management/

