
FIT: A Distributed Database Performance Tradeoff

Jose M. Faleiro, Yale University
Daniel J. Abadi, Yale University

• Presented by Bojun Wang

FAIRNESS

ISOLATION
THROUGHPUT

�1

Isolation v.s. Throughput and Fairness

• Strong isolation —> poor throughput

• poor isolation —> good throughput

• But fairness is another factor: FIT 3-way trade-off

FAIRNESS

ISOLATION
THROUGHPUT

�2

DEFINITIONS

• Distributed Transaction: reads/writes involves records from

multiple partitions

• ASSUMPTION: a distributed database must satisfy Liveness,

Atomicity, and Safety

�3

DEFINITIONS

• Liveness: If distributed transaction is always re-submitted whenever

it sees a system-induced abort, it’s guaranteed to commit eventually.

• system-induced abort: caused by partition failure or deadlocks

• logic-induced abort: caused by logic inside transaction

• Safety: all nodes involved in a distributed transaction must all agree

to commit, otherwise abort.

• Atomicity: all/none updates of a transaction are in database.

�4

Fairness (intuitively)
• Database system does not deliberately prioritize nor delay certain

transactions.

• Never artificially adds latency to a transaction for the purpose

of facilitating the execution of other transactions.

�5

UNFAIRNESS EXAMPLES
• Example 1: “group commit”

• writing logs to disk is slow

• write N transactions’ logs in batch, single disk write

• better overall throughput

• but some transactions cannot commit until threshold N is met

• Example 2: “lazy evaluation”

• collect transactions that reads/writes spatial close records

• defer execution

• amortize cost of bring records into memory

• but some transactions have to wait for other transactions

�6

DEFINITIONS

• Synchronization Independence: One transaction cannot cause

another transaction to block or abort. (Even with conflicting data

accesses)

• Synchronization Independence implies Weak Isolation

• running with synchronization independence, cannot guarantee any

form of isolation

�7

FIT TRADEOFF

• a distributed transaction needs coordination between partitions

• Strong isolation

—> conflicting transactions must wait

— > coordination increases wait time

—> bad throughput

�8

FIT TRADEOFF

• Distributed Transaction needs coordination between nodes

• Strong isolation

—> conflicting transactions must wait synchronization independence

— > coordination increases wait time reduce impact of coordination

Weak Isolation Good Throughput

�9

FIT TRADEOFF

• Strong Isolation

• coordination makes conflicting transaction wait longer

• But giving up Fairness can reduct this impact

• Example

• Do coordination outside of transaction

• Thus not increasing conflicting transactions wait time

• Better Throughput Bad Fairness

�10

FIT IN EXAMPLES

Fairness Isolation Throughput

G-Store

Calvin

Spanner

Cassandra

RAMP

�11

G-Store
EXAMPLES

Isolation Throughput Fairness

• KeyGroup

• Put a set of keys into one ‘leader’ partition

• Reduce coordination cost

• Not fair to keys not in KeyGroup

• Some Transactions delayed to form new KeyGroup

�12

Calvin
EXAMPLES

Isolation Throughput Fairness

• Pre-process a batch of transactions

• generate total ordering, i.e. a redo log

• serializable isolation level

• eliminate deadlock; avoid expensive planning for failures
forced-log writes, synchronous replication

• minimize coordination cost

• Pre-process a large batch of transactions for throughput
Unfairness

�13

Spanner
EXAMPLES

Isolation Throughput Fairness

• Serializable Isolation level

• Guarantee Fairness

• 2-phase-commit in replicated setting

• synchronously replicate every node’s prepare vote

• synchronously replicate coordinator’s final commit decision

• Coordination during transaction —> hurt throughput

�14

Cassandra
EXAMPLES

Isolation Throughput Fairness

• “batch transaction”: UPDATE SET DELETE

• allow clients to see partial results

• give up isolation

• no coordination required for conflicting “transactions”

• good throughput and good fairness

�15

RAMP
EXAMPLES

Isolation Throughput Fairness

• Read Atomic: All/None of a transaction updates are visible

• Implemented by Read Atomic Multi-Partition

• guarantee synchronization independence

• weak isolation

�16

FIT IN EXAMPLES

Fairness Isolation Throughput

G-Store

Calvin

Spanner

Cassandra

RAMP

�17

FIT, IN MULTICORE DATABASE
Isolation Throughput Fairness

• SILO: Multicore Machine Database, Serializable

• Tradeoff fairness to gain throughput

• append logs to shared in-memory buffer

• expensive to append logs due to synchronization cost

• each core store logs in core-local buffer

• periodically move logs from local to shared

• Amortize synchronization cost over batch of transactions. Unfairness

�18

FIT, IN MULTICORE DATABASE
Isolation Throughput Fairness

• Dopple: Multicore Machine Database, Serializable

• joined phase ——aggregate—— split phase

• joined phase, only one record exists, all transaction allowed

• split phase, replica, only allow commuting operations. Unfairness

�19

Coordination is a price

FIT TRADEOFF

• Pay it during transaction + strong isolation ==> poor throughput

• Pay it before transaction + strong isolation ==> unfairness

• Give up isolation (reduces coordination impact) ==> fairness &

throughput

�20

