Making Byzantine Fault
Tolerant Systems Tolerate

Byzantine Faults
Dian Yu

Comparison with PBFT (Traditional BFT protocols)
Similarities:
Build practical Byzantine fault tolerance systems

Protocol: Clients — Primary — Replicas — Agreement

Differences: (Robust)
Signature for authentication

Regular view change

Point to point communication

2/16

|deal BFT systems

“Handle normal and worst case separately as a rule because the requirements for
the two are quite different. The normal case must be fast. The worst case must

make some progress”

Gracious execution: synchronous execution. All clients and servers behave
correctly

Uncivil execution: synchronous execution. Up to f servers and any numbers of
clients are Byzantine

3/16

Problem with PBFT/Zyzzyva

Misguided: current BFT systems can survive Byzantine faults, but completely
unavailable by a simple failure

Dangerous: encourages fragile optimizations

Futile: Further improvements have little effect on performance

System Peak Throughput | Faulty Client
PBFT [8] 61710 0

Q/U [1] 23850 07

HQ [12] 7629 N/A*
Zyzzyva[18] 65999 0
Aardvark 38667 38667 /16

Aardvark: RBFT in action

3 stages:

1. Client request transmission
2. Replica agreement
3. Primary view change

Replica

5/16

Signed client requests - MAC

| SENDER | | RECEIVER |
MESSAGE MESSAGE
MAC [MESSAGE | MAC
Key (K)—> Algorithm MAC ey (C) = Algorithm
- 1

MAC:
Message Authentication Code

AT >+
v
If the same MAC is found: then

the message is authentic and
integrity checked

Else: something is not right.

Digital Signature

Uns.gm.d certificate; [Bob’ s 10 1

containg user 10 a
u5¢“r’5 p:b:c ic ke "as Information
well 35 informa+ion ' "
concerning the CA) Bob’s public key
! (|[_2=e | W(W}—72)
CA . Recepient can verify
s re by comparin
ha?ha?odc \)l'ahcs ?
SRR,

0:0:0:0:0:0:0:0:0:0:0:4 7
AV A A’A’A’A’A’A‘A‘A‘ A

Generate hash code

of unsigned
certificite y,@

Encrypt hash code Decrypt s re
u%prA's private key with YEA'S public ::Jc
+0 form signature 40 recover hash

Create s Use certificate 40 verify

digital cerhificate Bob's public key

7/16

Signed client requests - digital signatures

Problem with MAC: no non-repudiation property of digital signatures
Solution: Signature

e Valid MAC but not valid signature:
o Not routine message corruption
o Significant fault or malicious behavior with client

Denial-of-service attack?

1. Hybrid MAC-signature construct
2. Complete one request first

8/16

Resource isolation

Separate network interface controllers (NICs)
Separate work queues for clients and replicas

Hardware parallelism

Verification

Processing

5

Replica

Replica

[T T

Replica

9/16

Regular view changes

System throughput remains high when replicas are faulty (uncivil intervals)

Cost of a view change is similar to the regular cost of agreement

10/16

Protocol Description

| | | |
REQUEST | PRE-PREPARE | PREPARE | COMMIT . REPLY
| | | |

C ;
\I
|
0 .
|
|
1 :
|
2
3

1

11/16

{a) Blacklist~_"2
Check

Client request transmission

Fundamental challenge:

(c1) fail

Each replica comes to the same conclusion about

Retransmission Discard
the authenticity of the request O
Request:
- - fail Retransmit
Cached Reply
((REQUEST,O, 8, c)ac,. c),ic’p
An a |yS | S Sig::g;re Blacklist Sender Discard
Signature check: ensures only requests that will be pass

accepted by all correct replicas are processed.

(f) Once per fail
Result: for every k correct requests submitted by a

0
client, each replica performs at most k+1 signature a
verifications.

Discard

Act on Request

Replica agreement

Fundamental Challenge:

Ensure each replica can quickly collect
the quorums of PREPARE and COMMIT
messages necessary to make progress.

Potential solution:

1. Design a protocol so that incorrect
messages from faulty replica will
not gain quorum

2. If quorum of timely correct replicas
exists, a faulty replica cannot
impede progress.

a) Volum
Check
pass

(b) Round
Robin
Scheduler

(c) MA
Check

pass

(d) Classify
Message

Quorum Message

Preprepare
Message

Add to Quorum

Acton
Preprepare

(e) Quorum
Check

full

Act on Quorum

fail

Blacklist Sender

overflow

Discard

fail

Discard

Nonsense Message

Discard

Status
Message

not idle
(f) Idle Check

idle

Act on Message

Discard

Defer

Catchup messages

Benefit: allows temporarily slow replicas to avoid becoming permanently
non-responsive

Downside: faulty replicas impose significant load on non-faulty counterparts

14/16

Primary view changes

Faulty primary: delay processing requests, discard requests, corrupt clients’ MAC
authenticators, introduce gaps in the sequence number space, unfairly delay or

drop clients’ requests

Past systems: conservative. Only change when the current primary does not allow
the system make even minal progress

Aardvark: initiate a view change when delay exceeds heartbeat timer expires.

Fairness: PRE-PREPARES from the same client

15/16

Analysis (with proof)

1. Peak throughput during a gracious view
2. During uncivil executions, with a correct primary Aardvark’s throughput at
least g times the throughput of a gracious view

System Peak Throughput I\Ilje[t)“l;orll(Fl?[‘(éi[l)ng System Peak Throughput
PBFT 61710 crash |- LR 38667
Q/U 23850 23110 | crash PBFT 61710
HQ 7629 4470 0 PBFT w/ client signatures 31777
Zyzzyva 65999 crash - Aardvark w/o signatures 57405
Aardvark 38667 7873 - Aardvark w/o regular view changes 39771

16/16

Conclusion

All previous BFT (PBFT, QU, HQ, Zyzzyva) were broken under Byzantine fault

A system surviving the worst case doesn’t mean it works well. Should make it
work well in worst case as well.

A small adaptation for parallelism might improve the performance a lot

A robust system should give adequate performance in any scenario

17

Questions?

18

