
Making Byzantine Fault
Tolerant Systems Tolerate

Byzantine Faults
Dian Yu

1/16

Comparison with PBFT (Traditional BFT protocols)
Similarities:

Build practical Byzantine fault tolerance systems

Protocol: Clients → Primary → Replicas → Agreement

Differences: (Robust)
Signature for authentication

Regular view change

Point to point communication

2/16

Ideal BFT systems
“Handle normal and worst case separately as a rule because the requirements for
the two are quite different. The normal case must be fast. The worst case must
make some progress”

Gracious execution: synchronous execution. All clients and servers behave
correctly

Uncivil execution: synchronous execution. Up to f servers and any numbers of
clients are Byzantine

3/16

Problem with PBFT/Zyzzyva
Misguided: current BFT systems can survive Byzantine faults, but completely
unavailable by a simple failure

Dangerous: encourages fragile optimizations

Futile: Further improvements have little effect on performance

4/16

Aardvark: RBFT in action
3 stages:

1. Client request transmission
2. Replica agreement
3. Primary view change

5/16

Signed client requests - MAC

6/16

Digital Signature

7/16

Signed client requests - digital signatures
Problem with MAC: no non-repudiation property of digital signatures

Solution: Signature

● Valid MAC but not valid signature:
○ Not routine message corruption
○ Significant fault or malicious behavior with client

Denial-of-service attack?

1. Hybrid MAC-signature construct
2. Complete one request first

8/16

Resource isolation
Separate network interface controllers (NICs)

Separate work queues for clients and replicas

Hardware parallelism

9/16

System throughput remains high when replicas are faulty (uncivil intervals)

Cost of a view change is similar to the regular cost of agreement

Regular view changes

10/16

Protocol Description

11/16

Client request transmission
Fundamental challenge:

Request:

Analysis:

12

Each replica comes to the same conclusion about
the authenticity of the request

Signature check: ensures only requests that will be
accepted by all correct replicas are processed.

Result: for every k correct requests submitted by a
client, each replica performs at most k+1 signature
verifications.

Replica agreement
Fundamental Challenge:

Potential solution:

13

Ensure each replica can quickly collect
the quorums of PREPARE and COMMIT
messages necessary to make progress.

1. Design a protocol so that incorrect
messages from faulty replica will
not gain quorum

2. If quorum of timely correct replicas
exists, a faulty replica cannot
impede progress.

Catchup messages
Benefit: allows temporarily slow replicas to avoid becoming permanently
non-responsive

Downside: faulty replicas impose significant load on non-faulty counterparts

14/16

Primary view changes
Faulty primary: delay processing requests, discard requests, corrupt clients’ MAC
authenticators, introduce gaps in the sequence number space, unfairly delay or
drop clients’ requests

Past systems: conservative. Only change when the current primary does not allow
the system make even minal progress

Aardvark: initiate a view change when delay exceeds heartbeat timer expires.

Fairness: PRE-PREPARES from the same client

15/16

Analysis (with proof)
1. Peak throughput during a gracious view
2. During uncivil executions, with a correct primary Aardvark’s throughput at

least g times the throughput of a gracious view

16/16

Conclusion
All previous BFT (PBFT, QU, HQ, Zyzzyva) were broken under Byzantine fault

A system surviving the worst case doesn’t mean it works well. Should make it
work well in worst case as well.

A small adaptation for parallelism might improve the performance a lot

A robust system should give adequate performance in any scenario

17

Questions?

18

