Bitcoin-NG A Scalable Blockchain Protocol

Presented By: Muwei Zheng

Agenda

Review of Bitcoin

- Decentralized, P2P
- Hash Block
 - Header
 - Transactions
- Target
 - Hash puzzle
 - Mean interval: 10 mins

Size

- 1 MB
- Debate

Review of Bitcoin

• Fork

- Longest Chain
- Pruned

Problem: Scalability

• Max Throughput:

- Max Transactions per Block
 - $\frac{1,000,000 Bytes}{495 Bytes} = 2020$
- Max Throughput:

 $\frac{2020\ transactions}{10\ mins} = 3.37\ tps$

Problem: Potential Solutions

- Increase block size
 - More centralized

- Increase block frequency
 - More forks

Bitcoin-NG

• Leader

- Puzzle Solver
- Key block
 - Hash values like Bitcoin
 - Proof of Work
 - Pub key of leader
 - No transactions included
- Microblocks
 - Every 10 sec (min)
 - Leader signed header
 - No Proof of Work
 - Contain transactions

Every node reach consensus on header, instead of each transaction

Bitcoin-NG

• WHAT IF leader maliciously signed invalid transaction?

Every node has the full ability to verify the each transaction as in Bitcoin, therefore if anyone finds out a poisoned leader, they can broadcast this message, and the poisoned leader will lose the position and all its revenue as leader. The node who finds out will get a small portion amount of the revenue as reward.

Bitcoin-NG

• Fork

- Key block counts
- Fee Distribution
 - 40% 60%
 - Transaction Inclusion
 - Longest Chain Extension

Performance Evaluation – Metrics

- Consensus Delay (Appendix)
- Fairness
- Mining Power Utilization
- Time to Prune & Time to Win (Appendix)

Performance Evaluation - Metrics

Performance Evaluation - Metrics

- Mining Power Utilization
 - Hash power contributed to best chain Total hash power
 - Greater the better

Performance Evaluation – key findout

Performance Evaluation – key findout

Take-away

Bitcoin-NG	Metrics
 PoW key block; leader signed microblock Consensus on header 40% - 60% fee distribution Transaction Inclusion Longest chain extension 	 Consensus Delay – (% time, % nodes) Fairness Mining Power Utilization Time to Prune & Time to Win

References:

- Bitcoin-NG: A Scalable Blockchain Protocol. NSDI'16
- Block size debate: <u>https://en.bitcoin.it/wiki/Block_size_limit_controversy</u>
- Nakamoto consensus: <u>https://blockonomi.com/nakamoto-consensus/</u>
- Majority is not Enough: Bitcoin Mining is Vulnerable. Ittay Eyal, Emin G["]un Sirer 2013

Nakamoto Consensus

- To achieve BFT in a large scale P2P network.
- 4 parts:
 - Proof of work
 - Block Selection
 - Scarcity
 - Incentive Structure

• Debate on increasing block size:

• Favor:

- Need supply meets demand
- Lower fee -> more appealing to new users
- Opposed:
 - Higher barrier -> damage to decentralization
 - Possible future damage to censorship-resistant nature

- Key Block Header:
 - Ref to the previous block
 - Current Unix time
 - Coinbase transaction reward
 - Target value
 - Nonce field
 - Public key

- Microblocks Header:
 - Ref to the previous block
 - Current Unix time
 - Hash of its ledger entries
 - Signature of the header

Bitcoin-NG fee distribution

• α - mining power ratio; $r_{learder}$ – ratio of revenue of the leader; α < 0.25

Algorithm 1: Selfish-Mine		
Appendix	 on Init public chain ← publicly known blocks private chain ← publicly known blocks privateBranchLen ← 0 Mine at the head of the private chain. 	
Selfish Mining	6 on My pool found a block 7 $\Delta_{prev} \leftarrow \text{length}(\text{private chain}) - \text{length}(\text{public chain})$ 8 append new block to private chain 9 privateBranchLen \leftarrow privateBranchLen + 1 10 if $\Delta_{prev} = 0$ and privateBranchLen = 2 then 11 publish all of the private chain 12 privateBranchLen \leftarrow 0 13 Mine at the new head of the private chain.	(Was tie with branch of 1) (Pool wins due to the lead of 1)
	14 on Others found a block 15 $\Delta_{prev} \leftarrow \text{length}(\text{private chain}) - \text{length}(\text{public chain})$ 16 append new block to public chain	
	17if $\Delta_{prev} = 0$ then18private chain \leftarrow public chain19privateBranchLen $\leftarrow 0$	(they win)
	20 else if $\Delta_{prev} = 1$ then 21 publish last block of the private chain 22 else if $\Delta_{prev} = 2$ then	(Now same length. Try our luck)
	23 publish all of the private chain 24 $privateBranchLen \leftarrow 0$	(Pool wins due to the lead of 1)
	 else publish first unpublished block in private block. Mine at the head of the private chain. 	$({\it \Delta}_{prev}>2)$

Performance Evaluation - Metrics

Consensus Delay

- Denoted as (ε, δ)
- ϵ time ratio; δ node ratio
- (50%, 90%) = 10 sec; means 90% of the time, 50% of the nodes agree on the state of machine 10 seconds ago.

Performance Evaluation -Metrics

Time to Prune & Time to Win

- Time to Prune
 - Learn the 1st branch block -> prune branch
- Time to Win
 - 1st main branch block -> last side branch block

