
CS54100 – Programming Assignment 3

Relational Operators and Lazy Query

Evaluation Pipelines

● Due: 11:59PM, Wednesday, November 16, 2016. Submit using Blackboard.

● (There will be a 10% penalty for each late day. After 5 late days, the project will

not be accepted.)

Part 1: Scan Operators - From Records to Tuples

As you have learned in class, a typical database query processor optimizer breaks down

queries into trees of relational operators, implemented as iterators. The iterators (i.e., HeapScan

and HashScan) deal with file access directly, and return records or their ids. In this project, you

will build and use a higher-level view of these records with the provided classes Schema and

Tuple.

Each high-level relational operator you will implement inherits the abstract class Iterator, which

contains a schema and requires the following methods:

 protected Schema schema

 public void restart()

 public boolean isOpen()

 public void close()

 public boolean hasNext()

 public Tuple getNext()

 public void explain()

Your task is to implement the following wrappers for the heap and index scans:

1. FileScan

2. A HeapScan that returns Tuples instead of byte[] 's

3. KeyScan

4. A HashScan that returns Tuples instead of RIDs

5. IndexScan

6. A BucketScan that returns Tuples instead of RIDs

https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/heap/HeapScan.html
https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/heap/HeapScan.html
https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/index/HashScan.html
https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/relop/Schema.html
https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/relop/Tuple.html
https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/relop/Iterator.html

Some useful hints and tips:

● Each constructor should initialize the inherited field schema. (i.e. it's given as a

parameter to these three iterators)

● Don't be surprised by how little code these classes require

● HashScan scans the hash index for records having a given search key. BucketScan

scans the whole hash index. Those classes only return RIDs. You have to build wrapper

classes KeyScan and IndexScan that return Tuple.

● You are provided with code for SimpleJoin, which performs a simple nested loop join. It

can be useful to study SimpleJoin to understand the semantics of the Iterator interface.

PART 2: Primitive Operators

Now that you have the basic leaf nodes of most query trees, you can make some more

interesting iterators. Your next task is to implement the three fundamental operations of

relational algebra:

1. Selection

Filters another iterator on a set of Predicates. When there are multiple predicates within

a Selection operator, they are connected by operator "AND" by default (i.e. simply call

evaluate() on each one)

2. Projection

Removes (projects) columns from another iterator. Note: duplicates are OK.

3. Join

The code for "Nested Loops Join" is provided for you in SimpleJoin.java. You are

required to implement a HashJoin. You may consider to study the code in

SimpleJoin.java and figure out how you can extend it to support Hash Join. Please refer

to the textbook before implementing the hash-join.

HashJoin

As described in the course textbook and slides, the Hash-Join algorithm consists of two phases,

the partitioning and the probing phase. You are free to do any implementation of HashJoin you

wish as long as the algorithm is followed correctly. However, the following are some hints to get

started:

You do not have to implement partitioning entirely from scratch, as the BucketScan operator

(specifically, the IndexScan wrapper implemented in Part 1) can be used to accomplish this.

Although an IndexScan can be used in order to perform the partitioning, the input nodes to a

HashJoin can be any Iterator. You need to construct an IndexScan out of the input nodes, but

you need to avoid unnecessary I/Os while doing so. You need to consider the following cases:

 If an input node is already an IndexScan, do not rebuild the index. Use it as-is.

https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/relop/Predicate.html

 If an input node is a FileScan, you will have to construct an IndexScan. Create a

temporary HashIndex and make use of the existing file in the FileScan in order build the

IndexScan. You may add additional methods to the FileScan beyond those specified in

the public interface in order to facilitate this.

 For all other input nodes, you will have to materialize the result into temporary

files/indexes in order to construct an IndexScan.

For the probing phase, you need a good in-memory hash structure that can handle duplicate

keys. The HashTableDup class, provided in the skeleton code, is an extension of Java’s

HashTable that supports this. You can use this to help you implement the probing phase as

well.

PART 3: Query Evaluation Pipelines

Now that you have a set of operators, you are ready to use these operators to form query

evaluation pipelines (QEPs, for short) that can evaluate some queries.

To simplify your task, you are given the code for some simple QEPs that correspond to some

simple queries. You will find that code in ROTest.java. You have to study that code in order to

understand how a schema can be created, data can be inserted, and operators can be

connected in Minibase.

Consider the relational schema of two tables:

● Employee (EmpId, Name, Age, Salary, DeptID), and

● Department (DeptId, Name, MinSalary, MaxSalary)

For simplicity, assume one-to-one relationship between the two tables.

You are required to programmatically form a QEP for each of the queries given below:

1. Display for each employee his ID, Name and Age

2. Display the Name for the departments with MinSalary = MaxSalary

3. For each employee, display his Name and the Name of his department as well as the

maximum salary of his department

4. Display the Name for each employee whose Salary is greater than the maximum salary

of his department.

Note that whenever you need to connect a join operator to your QEP, you can use either the

hash-join operator you implemented, or the nested-loops join operator that is already given to

you. However, your final submission of Part 3 should use the hash-join operator.

Following the paradigm in ROTest.java, you have to write one test for each of the above

queries inside QEPTest.java.

Your main() method should take one argument that corresponds to the path of the folder in

which the data for the Employee and Department tables exists. A sample folder is given for you,

where there are two files named Employee.txt and Department.txt. The data in these files is in

comma-separated format. The first line in each of these files corresponds to the schema, e.g.,

(Empid, Name, Age, Salary, DeptID). Your program should read the data of each of these files

starting from the second line. Note that these files are provided for your convenience for testing,

and the contents will not be the same as what you are graded on. You are encouraged to insert

your own data into these files in order to test corner cases.

Getting Started

Skeleton of the code is available on blackboard, and the documentation is available here.

Note that this code skeleton is a complete starting point for the project, i.e., the bufmgr, heap,

and index packages are provided for you (in jar files).

To test your code for Parts 1 and 2, simply run the provided ROTest.java test driver.

To implement Part 3, you need to write test cases in QEPTest.java by mimicking ROTest.java.

Unlike ROTest.java, where the data is hardwired in the code, in QEPTest.java, you need to read

the files Employee.txt and Department.txt in order to load the data into Minibase. Loading the

data should be done once at the beginning, not once per test. The grading will be performed by

running all tests in QEPTest at once, not individually, so loading the data multiple times will

result in incorrect answers.

Note

Implementing the hash-join operator may consume more time than the other operators.

Because the code for nested-loops join is already given to you, you can start Part 3 once you

have implemented the selection and projection operators. At this point in time, one way to

distribute the work between two partners is to have one of them working on the hash-join

operator, and the other working on Part 3. This is just a recommendation, and it is totally up to

you on how to distribute the work between you as partners.

Turnin

You should turn in your code with the Makefile and a readme file. All files need to be zipped in a

file named: your_career_login1_your_career_login2_ro.zip.

In the readme file, put anything you would like us to know. We should be able to compile/run

your program using make on a CS department Unix machine.

Do not change the directory structure of the code. The directory structure of your zip file should

be identical to the directory structure of the provided zip file (i.e., having the directory src, the

https://www.cs.purdue.edu/homes/aref/Fall2015CS541/javadocs/index.html

Makefile, ...), except the top-level name (should be your career login above). Your grade may be

deduced 5% off if you don't follow this.

