N\

Relational Query Optimization

Chapters 13 and 14

Database Systems, R. kerish and J. Gehrke 1

Owverview of Query Optimization

v Plan: Tree of R.A. ops, with choice of alg for each op.
~ Each operator typically implemented using a “pull’
interface: when an operator is “pulled” for the next output
tuples, it “pulls’ on its inputs and computes them.
v Two main issues:
- For a given query, what plans are considered?
u Algorithm to search plan space for cheapest (estimated) plan.
~ How is the cost of a plan estimated?
v Ideally: Want to find best plan. Practically: Avoid
worst plans!

v We will study the System R approach.

Database Systems, R. isk and J. Gehrke 2

Highlights of System R Optimizer

v Impact:
- Most widely usedcurrently; works well for < 10 joins.
v Cost estimation: Approximate art at best.

- Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

- Considers combination of CPU and I/O costs.
v Plan Space: Too large, must be pruned.

- Only the space of left-deep plans is considered.

u Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

- Cartesian products avoided.

Database Systems, R. kerish and J. Gehrke 3

\Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

v Similar to old schema; rname added for variations.
v Reserves:

- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
v Sailors:

~ Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Database Systems, R. krist and J. Gehrke 4

RA Tree: Wsrme

Motivating Example .
SELECT S.sname b|d=1no‘
FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND

rating>5

c<a

id=sid
Rbid=100 AND S.rating>5 R

v Cost: 500+500%1000 1/Os Roserves Sallors
v By no means the worst plan! Plan: ''sname {On-the-fiy)
v Misses several opportunities:
selections could have been O big=100/\ rating>5 (On-the-fly)
“pushed’ earlier, no use is made
of any available indexes, etc.

v Goal of optimization: To find more &= (Simple Nested Loops)

- sid=sid
efficient plans that compute the
same answer. A sail
ailors
Database Systems, R. i and J. CCI\rE\:serves 5

T, (On-the-fly)

sname'

Alternative Plans 1 |

\Q\Io Indexes) == _(Sorterge Join)
. e
can; o O ating > 5 S5aM
2 e e a1

v Main difference: push selects.
v With 5 bulffers, cost of plan:

- Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

Reserves Sailors

- Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
- Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
- Total: 3560 page I/Os.
v If we used BNL join, join cost = 10+4*250, total cost = 2770.
v If we “push’ projections, T1 has only sid, T2 only sid and sname:
- T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Database Systems, R. ishnan and J. Gehrke 6

ﬂsnam (On-the-fly)

Alternative Plans 2
Wlth Indexes rl‘!ing>5 (On-the-fly)

sid=sid with pipelining)

Reserves, we get 100,000/100 =

1000 tuples on 1000/100 = 10 pages. Wserash o, 100 caiors

v INL with pipelining (outer is not resaltio
materialized). (T oes

—Projecting out unnecessary fields from outer doesn’t help.
v Join column sid is a key for Sailors.
—At most one matching tuple, unclustered index on sid OK.

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

Database Systems, R. kerish and J. Gehrke 7

v With clustered index on bid of B (Index Nested Loops,

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
v Nested blocks are usually treated as FROM Sailors S2
calls to a subroutine, made once per GROUP BY sz_mtmgi
outer tuple. (This is an over- 1
simplification, but serves for now.) Outer block Nested block
v For each block, the plans considered are:

\QQuery Blocks: Units of Optimization
v A

n SQL query is parsed into a
collection of query blocks, and these
are optimized one block at a time.

— All available access methods, for each reln in FROM clause.
— All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)

Database Systems, R. krist and J. Gehrke 8

\Cost Estimation

v For each plan considered, must estimate cost:
- Must estimate cost of each operation in plan tree.
u Depends on input cardinalities.

u We've already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

- Must estimate size of result for each operation in tree!
u Use information about the input relations.
u For selections and joins, assume independence of predicates.
v We'll discuss the System R cost estimation approach.
- Very inexact, but works ok in practice.
~ More sophisticated techniques known now.

Database Systems, R. kerish and J. Gehrke 9

Statistics and Catalogs

v Need information about the relations and indexes
involved. Catalogs typically contain at least:
~ # tuples (NTuples) and # pages (NPages) for each relation.
— # distinct key values (NKeys) and NPages for each index.
- Index height, low /high key values (Low /High) for each
tree index.
v Catalogs updated periodically.
- Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.
v More detailed information (e.g., histograms of the

values in some field) are sometimes stored.
Database Systems, R. krist and J. Gehrke 10

Size Estimation and Reduction Factors

SELECT attribute list
FROM relation list
v Consider a query block: | WHERE term1 AND ... AND termk

v Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

v Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

- Implicit assumption that terms are independent!

~ Term col=value has RF 1/NKeys(I), given index I on col
- Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))

- Term col>value has RF (High(I)-value) (High(I)-Low(I))

Database Systems, R. i and J. Gehrke 1

Relational Algebra Equivalences

v Allow us to choose different join orders and to “push’
selections and projections ahead of joins.

annan(R) = 04 (- 0,(R)) (Cascade)
0.1(0a(R)) = 0,(0.(R)
v Projections: 7, (R) = na](...(nm(R))) (Cascade)
voinss: R (S T)=(R S) T
(R S)=(S R)
+Showthat R (S T)=(T R) S

Database Systems, R. ishnan and J. Gehrke 12

v Selections: o

(Commute)

(Associative)

(Commute)

\Z\/Iore Equivalences

v A projection commutes with a selection that only
uses attributes retained by the projection.

v Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

v A selection on just attributes of R commutes with
RO S. (ie, o (R S)= o (R)[IS)

v Similarly, if a projection follows a join R[] S, we can
‘push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

Database Systems, R. kerish and J. Gehrke 13

Enumeration of Alternative Plans

v There are two main cases:
- Single-relation plans
- Multiple-relation plans

v For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:

— Each available access path (file scan / index) is considered,
and the one with the least estimated cost is chosen.

— The different operations are essentially carried out
together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Database Systems, R. krist and J. Gehrke 14

\Cost Estimates for Single-Relation Plans

v Index I on primary key matches selection:
- Cost is Height(I1)+1 for a B+ tree, about 1.2 for hash index.
v Clustered index I matching one or more selects:
- (NPages(I)+NPages(R)) * product of RF’s of matching selects.
v Non-clustered index I matching one or more selects:
- (NPages(1)+NTuples(R)) * product of RF’s of matching selects.
v Sequential scan of file:
~ NPages(R).
+ Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)

Database Systems, R. kerish and J. Gehrke 15

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Example

v If we have an index on rating:

- (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =
(1/10) * (50+500) pages are retrieved. (This is the cost.)

- Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) pages are retrieved.
v If we have an index on sid:
- Would have to retrieve all tuples/pages. With a clustered
index, the cost is 50+500, with unclustered index, 50+40000.
v Doing a file scan:
- We retrieve all file pages (500).

Database Systems, R. isk and J. Gehrke 16

Queries Over Multiple Relations
v Fundamental decision in System R: only left-deep join

trees are considered.
~ As the number of joins increases, the number of alternative
plans grows rapidly; we need to restrict the search space.
- Left-deep trees allow us to generate all fully pipelined plans.
u Intermediate results not written to temporary files.
u Not all left-deep trees are fully pipelined (e.g., SM join).

/M\ /N\
= = /\ /\
/ \ / \ /><\ ¢ c N
A B ¢ D 4 B Iy B
Database Systems, R. i and J. Gehrke 17

Enumeration of Left-Deep Plans

v Leftzdeep plans differ only in the order of relations,
the access method for each relation, and the join
method for each join.

v Enumerated using N passes (if N relations joined):

- Pass 1: Find best 1-relation plan for each relation.

- Pass 2: Find best way to join result of each 1-relation plan
(as outer) to another relation. (All 2-relation plans.)

- Pass N: Find best way to join result of a (N-1)-relation plan
(as outer) to the N'th relation. (All N-relation plans.)
v For each subset of relations, retain only:
- Cheapest plan overall, plus

- Cheapest plan for each interesting order of the tuples.
Database Systems, R. ishnan and J. Gehrke 18

Enumeration of Plans (Contd.)

v ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an “interestingly ordered’
plan or an addional sorting operator.

v An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.

- i.e, avoid Cartesian products if possible.

v In spite of pruning plan space, this approach is still

exponential in the # of tables.

Database Systems, R. kerish and J. Gehrke 19

Sailors: m
B+ tree on rating

Examp le Hash on sid
\ Reserves:

sname

>

sid=sid

B+ tree on bid

Pass!:

- Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper. Reserves Sailors

6bin:l=100 Orating >5

u Still, B+ tree plan kept (because tuples are in rating order).
~ Reserves: B+ tree on bid matches bid=500; cheapest.
v Pass 2:
- We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.
u e.g., Reserves as outer: Hash index can be used to get Sailors tuples

that satisfy sid = outer tuple’s sid value.
Database Systems, R. krist and J. Gehrke 20

SELECT S.sname
FROM Sailors S
WHERE EXISTS
(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

\Nested Queries

v Nested block is optimized
independently, with the outer

tuple considered as providing a

selection condition. Nested block to optimize:

SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

v Outer block is optimized with
the cost of “calling’ nested block
computation taken into account.

v Implicit ordering of these blocks -
means that some good strategies ~ Equivalent non-nested query:

are not considered. The non- SELECT S'.sname
nested version of the query is FROM Sailors S, Reserves R

typically optimized better. WHERE S.sid=Rsid
AND R.bid=103

Database Systems, R. kerish and J. Gehrke 21

Summary

v Query optimization is an important task in a
relational DBMS.

v Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

v Two parts to optimizing a query:

- Consider a set of alternative plans.
u Must prune search space; typically, left-deep plans only.
~ Must estimate cost of each plan that is considered.
u Must estimate size of result and cost for each plan node.
u Key issues: Statistics, indexes, operator implementations.

Database Systems, R. krist and J. Gehrke 22

Summary (Contd.)

v glxle—relation queries:
- All access paths considered, cheapest is chosen.
- Issues: Selections that match index, whether index key has
all needed fields and /or provides tuples in a desired order.
v Multiple-relation queries:
— All single-relation plans are first enumerated.
u Selections/ projections considered as early as possible.
~ Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.
~ Next, for each 2-relation plan that is “retained’, all ways of
joining another relation (as inner) are considered, etc.
~ At each level, for each subset of relations, only best plan for

each interestin§ order of tuples is “retained’.
Database Systems, R. i and J. Gehrke 23

