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Relational Query Optimization

Chapters 13 and 14
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Owverview of Query Optimization

v Plan: Tree of R.A. ops, with choice of alg for each op.
~ Each operator typically implemented using a “pull’
interface: when an operator is “pulled” for the next output
tuples, it “pulls’ on its inputs and computes them.
v Two main issues:
- For a given query, what plans are considered?
u Algorithm to search plan space for cheapest (estimated) plan.
~ How is the cost of a plan estimated?
v Ideally: Want to find best plan. Practically: Avoid
worst plans!

v We will study the System R approach.
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Highlights of System R Optimizer

v Impact:
- Most widely usedcurrently; works well for < 10 joins.
v Cost estimation: Approximate art at best.

- Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

- Considers combination of CPU and I/O costs.
v Plan Space: Too large, must be pruned.

- Only the space of left-deep plans is considered.

u Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

- Cartesian products avoided.
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\Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

v Similar to old schema; rname added for variations.
v Reserves:

- Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
v Sailors:

~ Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
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RA Tree: Wsrme

Motivating Example .
SELECT S.sname b|d=1no‘
FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND

rating>5

c<a

id=sid
Rbid=100 AND S.rating>5 R

v Cost: 500+500%1000 1/Os Roserves  Sallors
v By no means the worst plan!  Plan: ''sname {On-the-fiy)
v Misses several opportunities:
selections could have been O big=100/\ rating>5  (On-the-fly)
“pushed’ earlier, no use is made
of any available indexes, etc.

v Goal of optimization: To find more &= (Simple Nested Loops)

- sid=sid
efficient plans that compute the
same answer. A sail
ailors
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T, (On-the-fly)

sname'

Alternative Plans 1 |

\Q\Io Indexes) == _(Sorterge Join)
. e
can; o O ating > 5 S5aM
2 e e a1

v Main difference: push selects.
v With 5 bulffers, cost of plan:

- Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

Reserves Sailors

- Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
- Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
- Total: 3560 page I/Os.
v If we used BNL join, join cost = 10+4*250, total cost = 2770.
v If we “push’ projections, T1 has only sid, T2 only sid and sname:
- T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.
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ﬂsnam (On-the-fly)

Alternative Plans 2
Wlth Indexes rl‘!ing>5 (On-the-fly)

sid=sid  with pipelining )

Reserves, we get 100,000/100 =

1000 tuples on 1000/100 = 10 pages. Wserash o, 100 caiors

v INL with pipelining (outer is not resaltio
materialized). ( T oes

—Projecting out unnecessary fields from outer doesn’t help.
v Join column sid is a key for Sailors.
—At most one matching tuple, unclustered index on sid OK.

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.
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v With clustered index on bid of B (Index Nested Loops,

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
v Nested blocks are usually treated as FROM Sailors S2
calls to a subroutine, made once per GROUP BY sz_mtmgi
outer tuple. (This is an over- 1
simplification, but serves for now.) Outer block  Nested block
v For each block, the plans considered are:

\QQuery Blocks: Units of Optimization
v A

n SQL query is parsed into a
collection of query blocks, and these
are optimized one block at a time.

— All available access methods, for each reln in FROM clause.
— All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)
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\Cost Estimation

v For each plan considered, must estimate cost:
- Must estimate cost of each operation in plan tree.
u Depends on input cardinalities.

u We've already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

- Must estimate size of result for each operation in tree!
u Use information about the input relations.
u For selections and joins, assume independence of predicates.
v We'll discuss the System R cost estimation approach.
- Very inexact, but works ok in practice.
~ More sophisticated techniques known now.
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Statistics and Catalogs

v Need information about the relations and indexes
involved. Catalogs typically contain at least:
~ # tuples (NTuples) and # pages (NPages) for each relation.
— # distinct key values (NKeys) and NPages for each index.
- Index height, low /high key values (Low /High) for each
tree index.
v Catalogs updated periodically.
- Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.
v More detailed information (e.g., histograms of the

values in some field) are sometimes stored.
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Size Estimation and Reduction Factors

SELECT attribute list
FROM relation list
v Consider a query block: | WHERE term1 AND ... AND termk

v Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

v Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

- Implicit assumption that terms are independent!

~ Term col=value has RF 1/NKeys(I), given index I on col
- Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))

- Term col>value has RF (High(I)-value) (High(I)-Low(I))
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Relational Algebra Equivalences

v Allow us to choose different join orders and to “push’
selections and projections ahead of joins.

annan(R) = 04 ( - 0,(R))  (Cascade)
0.1(0a(R)) = 0,(0.(R)
v Projections: 7, (R) = na](...(nm(R))) (Cascade)
voinss: R (S T)=(R S) T
(R S)=(S R)
+Showthat R (S T)=(T R) S
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v Selections: o

(Commute)

(Associative)

(Commute)




\Z\/Iore Equivalences

v A projection commutes with a selection that only
uses attributes retained by the projection.

v Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

v A selection on just attributes of R commutes with
RO S. (ie, o (R S)= o (R)[IS)

v Similarly, if a projection follows a join R[] S, we can
‘push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.
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Enumeration of Alternative Plans

v There are two main cases:
- Single-relation plans
- Multiple-relation plans

v For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:

— Each available access path (file scan / index) is considered,
and the one with the least estimated cost is chosen.

— The different operations are essentially carried out
together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).
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\Cost Estimates for Single-Relation Plans

v Index I on primary key matches selection:
- Cost is Height(I1)+1 for a B+ tree, about 1.2 for hash index.
v Clustered index I matching one or more selects:
- (NPages(I)+NPages(R)) * product of RF’s of matching selects.
v Non-clustered index I matching one or more selects:
- (NPages(1)+NTuples(R)) * product of RF’s of matching selects.
v Sequential scan of file:
~ NPages(R).
+ Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)
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SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Example

v If we have an index on rating:

- (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =
(1/10) * (50+500) pages are retrieved. (This is the cost.)

- Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) pages are retrieved.
v If we have an index on sid:
- Would have to retrieve all tuples/pages. With a clustered
index, the cost is 50+500, with unclustered index, 50+40000.
v Doing a file scan:
- We retrieve all file pages (500).
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Queries Over Multiple Relations
v Fundamental decision in System R: only left-deep join

trees are considered.
~ As the number of joins increases, the number of alternative
plans grows rapidly; we need to restrict the search space.
- Left-deep trees allow us to generate all fully pipelined plans.
u Intermediate results not written to temporary files.
u Not all left-deep trees are fully pipelined (e.g., SM join).

/M\ /N\
= = /\ /\
/ \ / \ /><\ ¢ c N
A B ¢ D 4 B Iy B
Database Systems, R. i and J. Gehrke 17

Enumeration of Left-Deep Plans

v Leftzdeep plans differ only in the order of relations,
the access method for each relation, and the join
method for each join.

v Enumerated using N passes (if N relations joined):

- Pass 1: Find best 1-relation plan for each relation.

- Pass 2: Find best way to join result of each 1-relation plan
(as outer) to another relation. (All 2-relation plans.)

- Pass N: Find best way to join result of a (N-1)-relation plan
(as outer) to the N'th relation. (All N-relation plans.)
v For each subset of relations, retain only:
- Cheapest plan overall, plus

- Cheapest plan for each interesting order of the tuples.
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Enumeration of Plans (Contd.)

v ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an “interestingly ordered’
plan or an addional sorting operator.

v An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.

- i.e, avoid Cartesian products if possible.

v In spite of pruning plan space, this approach is still

exponential in the # of tables.
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Sailors: m
B+ tree on rating

Examp le Hash on sid
\ Reserves:

sname

>

sid=sid

B+ tree on bid

Pass!:

- Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper. Reserves Sailors

6bin:l=100 Orating >5

u Still, B+ tree plan kept (because tuples are in rating order).
~ Reserves: B+ tree on bid matches bid=500; cheapest.
v Pass 2:
- We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.
u e.g., Reserves as outer: Hash index can be used to get Sailors tuples

that satisfy sid = outer tuple’s sid value.
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SELECT S.sname
FROM Sailors S
WHERE EXISTS
(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

\Nested Queries

v Nested block is optimized
independently, with the outer

tuple considered as providing a

selection condition. Nested block to optimize:

SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

v Outer block is optimized with
the cost of “calling’ nested block
computation taken into account.

v Implicit ordering of these blocks -
means that some good strategies ~ Equivalent non-nested query:

are not considered. The non- SELECT S'.sname
nested version of the query is FROM Sailors S, Reserves R

typically optimized better. WHERE S.sid=Rsid
AND R.bid=103
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Summary

v Query optimization is an important task in a
relational DBMS.

v Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

v Two parts to optimizing a query:

- Consider a set of alternative plans.
u Must prune search space; typically, left-deep plans only.
~ Must estimate cost of each plan that is considered.
u Must estimate size of result and cost for each plan node.
u Key issues: Statistics, indexes, operator implementations.
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Summary (Contd.)

v glxle—relation queries:
- All access paths considered, cheapest is chosen.
- Issues: Selections that match index, whether index key has
all needed fields and /or provides tuples in a desired order.
v Multiple-relation queries:
— All single-relation plans are first enumerated.
u Selections/ projections considered as early as possible.
~ Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.
~ Next, for each 2-relation plan that is “retained’, all ways of
joining another relation (as inner) are considered, etc.
~ At each level, for each subset of relations, only best plan for

each interestin§ order of tuples is “retained’.
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