
1/16

Fault-Tolerant Distributed Transactions on Blockchain
Practical Byzantine Fault-Tolerant Consensus

Suyash Gupta Jelle Hellings Mohammad Sadoghi



2/16

A Resilient Database Management System (RDBMS)

g 
Client RDBMS

ParentOf
Parent Child

Alice Carol

Bob Carol

Carol Dan

Carol Eve

Dan Faythe

τ = “SELECT Child
FROM ParentOf
WHERE parent = ‘Carol’;”

Result
Child

Dan

Eve

The RDBMS should be resilient,

while serving as a single coherent system in a transparent way.



2/16

A Resilient Database Management System (RDBMS)

g 
Client RDBMS

ParentOf
Parent Child

Alice Carol

Bob Carol

Carol Dan

Carol Eve

Dan Faythe

τ = “SELECT Child
FROM ParentOf
WHERE parent = ‘Carol’;”

Result
Child

Dan

Eve

The RDBMS should be resilient,

while serving as a single coherent system in a transparent way.



2/16

A Resilient Database Management System (RDBMS)

g 
Client RDBMS

ParentOf
Parent Child

Alice Carol

Bob Carol

Carol Dan

Carol Eve

Dan Faythe

τ = “SELECT Child
FROM ParentOf
WHERE parent = ‘Carol’;”

Result
Child

Dan

Eve

The RDBMS should be resilient,

while serving as a single coherent system in a transparent way.



2/16

A Resilient Database Management System (RDBMS)

g 
Client RDBMS

ParentOf
Parent Child

Alice Carol

Bob Carol

Carol Dan

Carol Eve

Dan Faythe

τ = “SELECT Child
FROM ParentOf
WHERE parent = ‘Carol’;”

Result
Child

Dan

Eve

Reminder: Deterministic execution

All replicas in the RDBMS must perform the same execution of every transaction. E.g.,

τ = “Remove a child of Carol from the ParentOf table,”

should result in all replicas removing the same child!



3/16

A Resilient RDBMS: What Can Go Wrong?

We assume malicious participation!

Malicious replicas can . . .

▶ try to insert forged transactions into the RDBMS;

▶ try to prevent some clients from using the RDBMS;

▶ try to send invalid results to clients using the RDBMS;

▶ try to interfere with the working of other replicas of the RDBMS;

▶ try to disrupt the consensus used by the RDBMS.



4/16

A Practical Definition of Consensus for Client-Server Services

Each replica q ∈ R maintains an append-only ledger Lq

(representing a sequence of client transactions).
A consensus protocol operates in rounds ρ = 0, 1, 2, 3, . . . that each satisfy:

Termination Eventually, each good replica r ∈ G will append a single client

transaction τ to their ledger such that: after round ρ, we have Lr[ρ] = τ .

Non-divergence If good replicas r1, r2 ∈ G appended τ1 and τ2 to their ledger in round ρ,
then τ1 = τ2.

Validity If good replica r ∈ G appended τ to its ledger,

then τ is requested by some client.

Response If good replica r ∈ G appended τ to its ledger in round ρ,
then the client that requested τ will receive the result of executing τ .

Service If a good client requests τ ,
then eventually a good replica will append τ to its ledger.



4/16

A Practical Definition of Consensus for Client-Server Services

Each replica q ∈ R maintains an append-only ledger Lq

(representing a sequence of client transactions).
A consensus protocol operates in rounds ρ = 0, 1, 2, 3, . . . that each satisfy:

Termination Eventually, each good replica r ∈ G will append a single client

transaction τ to their ledger such that: after round ρ, we have Lr[ρ] = τ .

Non-divergence If good replicas r1, r2 ∈ G appended τ1 and τ2 to their ledger in round ρ,
then τ1 = τ2.

Validity If good replica r ∈ G appended τ to its ledger,

then τ is requested by some client.

Response If good replica r ∈ G appended τ to its ledger in round ρ,
then the client that requested τ will receive the result of executing τ .

Service If a good client requests τ ,
then eventually a good replica will append τ to its ledger.



4/16

A Practical Definition of Consensus for Client-Server Services

Each replica q ∈ R maintains an append-only ledger Lq

(representing a sequence of client transactions).
A consensus protocol operates in rounds ρ = 0, 1, 2, 3, . . . that each satisfy:

Termination Eventually, each good replica r ∈ G will append a single client

transaction τ to their ledger such that: after round ρ, we have Lr[ρ] = τ .

Non-divergence If good replicas r1, r2 ∈ G appended τ1 and τ2 to their ledger in round ρ,
then τ1 = τ2.

Validity If good replica r ∈ G appended τ to its ledger,

then τ is requested by some client.

Response If good replica r ∈ G appended τ to its ledger in round ρ,
then the client that requested τ will receive the result of executing τ .

Service If a good client requests τ ,
then eventually a good replica will append τ to its ledger.



5/16

Primary-Backup Replication

Primary Coordinates consensus: propose the order of transactions to replicate.

Backup Accept proposals and verifies behavior of the primary.

g    . . . 
Client Primary Replica Replica Replica

Request τ

Propose τ

Dealing with failures to guarantee resilience.

Result of τ



5/16

Primary-Backup Replication

Primary Coordinates consensus: propose the order of transactions to replicate.

Backup Accept proposals and verifies behavior of the primary.

g    . . . 
Client Primary Replica Replica Replica

Request τ

Propose τ

Dealing with failures to guarantee resilience.

Result of τ



5/16

Primary-Backup Replication

Primary Coordinates consensus: propose the order of transactions to replicate.

Backup Accept proposals and verifies behavior of the primary.

g    . . . 
Client Primary Replica Replica Replica

Request τ

Propose τ

Dealing with failures to guarantee resilience.

Result of τ



5/16

Primary-Backup Replication

Primary Coordinates consensus: propose the order of transactions to replicate.

Backup Accept proposals and verifies behavior of the primary.

g    . . . 
Client Primary Replica Replica Replica

Request τ

Propose τ

Dealing with failures to guarantee resilience.

Result of τ



5/16

Primary-Backup Replication

Primary Coordinates consensus: propose the order of transactions to replicate.

Backup Accept proposals and verifies behavior of the primary.

g    . . . 
Client Primary Replica Replica Replica

Request τ

Propose τ

Dealing with failures to guarantee resilience.

Result of τ



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose

Prepare

Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.

▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

all n replicas

m Prepare messages

≥ m− f good replicas

≤ f Byzantine replicas
less-than-m− f replicas!



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

all n replicas

m Prepare messages

≥ m− f good replicas

≤ f Byzantine replicas
less-than-m− f replicas!



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

all n replicas

m Prepare messages

≥ m− f good replicas

≤ f Byzantine replicas

less-than-m− f replicas!



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

all n replicas

m Prepare messages

≥ m− f good replicas

≤ f Byzantine replicas
less-than-m− f replicas!



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

We must have: n−m < m− f
Take maximum value form: m = nf = n− f. We must have:

n− (n− f) < (n− f)− f

(simplify terms)

f < n− 2f

(rearrange terms)

3f < n



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

We must have: n−m < m− f
Take maximum value form: m = nf = n− f. We must have:

n− (n− f) < (n− f)− f (simplify terms)

f < n− 2f

(rearrange terms)

3f < n



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

What is a sufficient amount of matching Prepare-messages

Assume we received matching Prepare messages from m ≤ nf = n− f replicas.
▶ f-out-of-m replicas can be Byzantine and send out several Prepare messages.

▶ n−m replicas could have received different proposals from the primary.

We must have: n−m < m− f
Take maximum value form: m = nf = n− f. We must have:

n− (n− f) < (n− f)− f (simplify terms)

f < n− 2f (rearrange terms)

3f < n



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?

> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

▶ Replicas pledge only if they receive sufficient matching Prepare-messages.

▶ Replicas commit only if they receive sufficient matching Commit-messages.

▶ Client observes outcome only if they receive sufficient matching Inform messages.



6/16

Primary-Backup Replication: Dealing with Byzantine Failures

Enforce “If good replicas pledge, then they all should do so for the same transaction.”

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Theorem

If the primary is good and the network is reliable,
then all good replicas will commit and the client will observe outcome.



7/16

Recovering from Failure: Detecting Failures

Case 1: Primary failure, ignores replica r4

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

Case 1: Primary failure, ignores replica r4

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

Case 2: Replica failure at r4, pretends primary failed

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

Case 2: Replica failure at r4, pretends primary failed

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

Case 3: Message delays

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

Case 3: Message delays

r4

r3

r2

r1

p

c

τ

Propose Prepare Commit Inform

> nf > 2f?> nf > 2f?
> f?

Claim Failure



7/16

Recovering from Failure: Detecting Failures

What do replicas r1, r2, and r3 see?

▶ They got Proposal and Commit messages from the primary.

▶ They got Prepare and Commit messages from each other.

▶ They got a failure claim from r4.

For replicas r1, r2, and r3: the three case are indistinguishable.

Implications

▶ We cannot detect all failures.

▶ Byzantine replicas can lie about primary failure.

▶ Network failure can look like primary failure.



7/16

Recovering from Failure: Detecting Failures

What do replicas r1, r2, and r3 see?

▶ They got Proposal and Commit messages from the primary.

▶ They got Prepare and Commit messages from each other.

▶ They got a failure claim from r4.

For replicas r1, r2, and r3: the three case are indistinguishable.

Implications

▶ We cannot detect all failures.

▶ Byzantine replicas can lie about primary failure.

▶ Network failure can look like primary failure.



7/16

Recovering from Failure: Detecting Failures

What do replicas r1, r2, and r3 see?

▶ They got Proposal and Commit messages from the primary.

▶ They got Prepare and Commit messages from each other.

▶ They got a failure claim from r4.

For replicas r1, r2, and r3: the three case are indistinguishable.

Implications

▶ We cannot detect all failures.

▶ Byzantine replicas can lie about primary failure.

▶ Network failure can look like primary failure.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”

▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”

▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”

▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”

▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”
▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”
▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”
▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”
▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”
▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”
▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



8/16

Recovery from Failure: Two Cases

We cannot detect all failures.

Assume (for now): No network failures

Upon a failure claim, we can distinguish two cases:

We cannot pinpoint a failure

“A few failure claims (at-most-f)”
▶ Sufficient replicas can commit.

▶ Primary or backup failure.

▶ Keep the primary in charge.

▶ Use checkpoints to recover any backups.

We can pinpoint a failure

“A lot of failure claims (at-least-f)”
▶ Sufficient replicas fail to commit.

▶ The primary failed.

▶ Elect a new primary.

▶ Use view-change to recover failed state.



9/16

PBFT Operates in Views

In view v , the replica p with id(p) = v modn is the primary.

▶ View v will perform consensus rounds until failure.

▶ If view v fails to perform rounds: we assume failure of p.

▶ Upon failure of p, we move to view v + 1.

▶ View v + 1 must recover all requests with possibly-observed outcomes.

The two phases of a view-change

▶ Phase 1: Synchronize failure detection.
▶ Phase 2: New-View proposal.



9/16

PBFT Operates in Views

In view v , the replica p with id(p) = v modn is the primary.

▶ View v will perform consensus rounds until failure.

▶ If view v fails to perform rounds: we assume failure of p.

▶ Upon failure of p, we move to view v + 1.

▶ View v + 1 must recover all requests with possibly-observed outcomes.

The two phases of a view-change

▶ Phase 1: Synchronize failure detection.
▶ Phase 2: New-View proposal.



10/16

Recovery from Failure: New-View Proposal

r3

r2

r1

pv+1

pv �

Detect Failure

ViewChange NewView

New primary pv+1 needs to recover requests

▶ Each replica r sends to pv+1 a signed ViewChange message mr.

(mr summarizes all proposals, all pledges, and all commits by r.)

▶ pv+1 selects a set N of nf = n− f well-formed ViewChange messages.

▶ pv+1 proposes a NewView message with content N as the basis for recovery.

▶ Each replica updates their internal state in accordance with N .



10/16

Recovery from Failure: New-View Proposal

r3

r2

r1

pv+1

pv �

Detect Failure

ViewChange

NewView

New primary pv+1 needs to recover requests

▶ Each replica r sends to pv+1 a signed ViewChange message mr.

(mr summarizes all proposals, all pledges, and all commits by r.)

▶ pv+1 selects a set N of nf = n− f well-formed ViewChange messages.

▶ pv+1 proposes a NewView message with content N as the basis for recovery.

▶ Each replica updates their internal state in accordance with N .



10/16

Recovery from Failure: New-View Proposal

r3

r2

r1

pv+1

pv �

Detect Failure

ViewChange

NewView

New primary pv+1 needs to recover requests

▶ Each replica r sends to pv+1 a signed ViewChange message mr.

(mr summarizes all proposals, all pledges, and all commits by r.)

▶ pv+1 selects a set N of nf = n− f well-formed ViewChange messages.

▶ pv+1 proposes a NewView message with content N as the basis for recovery.

▶ Each replica updates their internal state in accordance with N .



10/16

Recovery from Failure: New-View Proposal

r3

r2

r1

pv+1

pv �

Detect Failure

ViewChange NewView

New primary pv+1 needs to recover requests

▶ Each replica r sends to pv+1 a signed ViewChange message mr.

(mr summarizes all proposals, all pledges, and all commits by r.)

▶ pv+1 selects a set N of nf = n− f well-formed ViewChange messages.

▶ pv+1 proposes a NewView message with content N as the basis for recovery.

▶ Each replica updates their internal state in accordance with N .



10/16

Recovery from Failure: New-View Proposal

r3

r2

r1

pv+1

pv �

Detect Failure

ViewChange NewView

New primary pv+1 needs to recover requests

▶ Each replica r sends to pv+1 a signed ViewChange message mr.

(mr summarizes all proposals, all pledges, and all commits by r.)

▶ pv+1 selects a set N of nf = n− f well-formed ViewChange messages.

▶ pv+1 proposes a NewView message with content N as the basis for recovery.

▶ Each replica updates their internal state in accordance with N .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

Informal goal: “View v + 1 must recover all requests with possibly-observed outcomes”.

▶ Possibly-observed outcome for τ : only if one good replica committed τ .
▶ Possibly-committed τ : only if nf − f good replicas pledged τ .

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

Informal goal: “View v + 1 must recover all requests with possibly-observed outcomes”.

▶ Possibly-observed outcome for τ : only if one good replica committed τ .

▶ Possibly-committed τ : only if nf − f good replicas pledged τ .

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

Informal goal: “View v + 1 must recover all requests with possibly-observed outcomes”.

▶ Possibly-observed outcome for τ : only if one good replica committed τ .
▶ Possibly-committed τ : only if nf − f good replicas pledged τ .

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

Informal goal: “View v + 1 must recover all requests with possibly-observed outcomes”.

▶ Possibly-observed outcome for τ : only if one good replica committed τ .
▶ Possibly-committed τ : only if nf − f good replicas pledged τ .

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f

Consider any set M of nf − f good replicas that pledged τ in round ρ of view v .

all n replicas

nf ViewChange messages in N

≥ nf − f good replicas

≤ f Byzantine replicas
less-than-n− nf = f replicas!

a replica from M

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
Consider any set M of nf − f good replicas that pledged τ in round ρ of view v .

all n replicas

nf ViewChange messages in N

≥ nf − f good replicas

≤ f Byzantine replicas
less-than-n− nf = f replicas!

a replica from M

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
Consider any set M of nf − f good replicas that pledged τ in round ρ of view v .

all n replicas

nf ViewChange messages in N

≥ nf − f good replicas

≤ f Byzantine replicas
less-than-n− nf = f replicas!
a replica from M

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
Let q be a replica in M whose ViewChange message is in N .

▶ q pledged τ in round ρ of view v .
▶ q did not pledge in round ρ of views u > v (v is latest view).
▶ q has nf Prepare messages to prove validity of the pledge: a pledge proof .

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
Let q be a replica in M whose ViewChange message is in N .
▶ q pledged τ in round ρ of view v .
▶ q did not pledge in round ρ of views u > v (v is latest view).
▶ q has nf Prepare messages to prove validity of the pledge: a pledge proof .

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
Let q be a replica in M whose ViewChange message is in N .
▶ q pledged τ in round ρ of view v .
▶ q did not pledge in round ρ of views u > v (v is latest view).
▶ q has nf Prepare messages to prove validity of the pledge: a pledge proof .

For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .

Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Base case: w = v , n > 3f
For simplicity: We include prepare certificates (pledge proofs) in ViewChange messages.

N holds a prepare certificate for τ if nf − f good replicas pledged τ in round ρ of view v .
Likewise: N holds a commit certificate for τ if nf − f good replicas committed τ .

Recovery Rule

Recover transactions τ for round ρ for which a prepare certificates was included in N for a

view w ≤ v such that no more recent certificates for round ρ exists.

Inductive case: w < v , n > 3f
Consider a view-change to view w ′

, w < w ′ < v :

▶ View-change fails—View w ′
will not make new prepare certificates for any rounds.

▶ View-change succeeds—View w ′
can make new prepare certificates for any round ρ′,

but only if no transactions where recovered for round ρ′.



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Recovery Rule

Recover transactions τ for round ρ for which a prepare certificates was included in N for a

view w ≤ v such that no more recent certificates for round ρ exists.

Inductive case: w < v , n > 3f
Consider a view-change to view w ′

, w < w ′ < v :
▶ View-change fails—View w ′

will not make new prepare certificates for any rounds.

▶ View-change succeeds—View w ′
can make new prepare certificates for any round ρ′,

but only if no transactions where recovered for round ρ′.



11/16

Interpretation of a NewViewMessage

Consider any set N of nf = n− f well-formed ViewChange messages for view v + 1.

A minimal view-change guarantee
A view-change to view v + 1 can only succeed if the change recover all requests
to which at-least nf − f good replicas pledged in a round ρ of a preceding view w ≤ v .

Recovery Rule

Recover transactions τ for round ρ for which a prepare certificates was included in N for a

view w ≤ v such that no more recent certificates for round ρ exists.

Start of a new view

Consider a round ρ. If N contains

▶ no prepare certificates for ρ, then consider nothing proposed yet;

▶ a commit certificate for ρ, then consider round ρ committed;

▶ a prepare certificate for ρ, then repropose the certified transaction.



12/16

View-Changes and Authenticated Communication

We described a view-change protocol with message forwarding: digital signatures.

View-changes with authenticated communication only is possible, but more complex.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?

▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?

r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?
r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?
r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?
r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



13/16

Recovery from Failure: Starting a View-Change

Consider a replica r

▶ When does r start participating in a view-change?

After it detects a failure.

▶ How does r detect failure?

▶ When it expects to commit a proposal, but fails to do so on time?
▶ If a good replica claims failure: At-least f + 1 failure claims.

▶ When is a commit not on time for r?
r uses an internal network delay estimate (remember: asynchronous communication).

▶ When can r expect any commit?

▶ If r forwarded a client request to the current primary.

▶ If r received a Proposal message or received f + 1 Prepare or Commit messages.



14/16

Recovery from Failure: Out-of-Sync

What if . . .

▶ r1 starts the view-change at t1 = 15, with an expected duration of 4.

▶ r2 starts the view-change at t2 = 20, with an expected duration of 2.

▶ r3 starts the view-change at t3 = 12, with an expected duration of 1.

▶ r4 does not start the view-change (the current and Byzantine primary).

View-change itself will fail!

Replicas need to start view-change roughly at the same time.

Replicas must wait long enough for the new primary to be able to finish.



14/16

Recovery from Failure: Out-of-Sync

What if . . .

▶ r1 starts the view-change at t1 = 15, with an expected duration of 4.

▶ r2 starts the view-change at t2 = 20, with an expected duration of 2.

▶ r3 starts the view-change at t3 = 12, with an expected duration of 1.

▶ r4 does not start the view-change (the current and Byzantine primary).

View-change itself will fail!

Replicas need to start view-change roughly at the same time.

Replicas must wait long enough for the new primary to be able to finish.



14/16

Recovery from Failure: Out-of-Sync

What if . . .

▶ r1 starts the view-change at t1 = 15, with an expected duration of 4.

▶ r2 starts the view-change at t2 = 20, with an expected duration of 2.

▶ r3 starts the view-change at t3 = 12, with an expected duration of 1.

▶ r4 does not start the view-change (the current and Byzantine primary).

View-change itself will fail!

Replicas need to start view-change roughly at the same time.

Replicas must wait long enough for the new primary to be able to finish.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection
Assume: Replica r uses network delay δ(r, v) in view v

▶ If r detects failure, it starts broadcasting Failure messages.

▶ If r knows that all good replicas will detect failure: start timer.

▶ When r starts the timer, it sends ViewChange to the new primary.

▶ If a valid NewView message arrives on time: accept it.

▶ If no valid NewView message arrives: detect failure of view v + 1.

(Use exponential backoff on the network delay: δ(r, v + 1) = 2δ(r, v).)

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.



15/16

Recovery from Failure: Synchronize Failure Detection

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.

r3

r2

r1

pv+1

pv �

Detect Failure

Claim Failure

Synchronized



15/16

Recovery from Failure: Synchronize Failure Detection

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.

r3

r2

r1

pv+1

pv �

Detect Failure Claim Failure

Synchronized



15/16

Recovery from Failure: Synchronize Failure Detection

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.

r3

r2

r1

pv+1

pv �

Detect Failure Claim Failure

Synchronized



15/16

Recovery from Failure: Synchronize Failure Detection

When does r know that all good replicas will detect failure?

▶ If f + 1 good replicas detect failure, then everyone will receive f + 1 Failure
messages.

▶ If a replica receives f + 1 Failure messages, it will also claim failure.

▶ Receiving 2f + 1 Failure messages implies f + 1 came from good replicas.

r3

r2

r1

pv+1

pv �

Detect Failure Claim Failure

Synchronized



16/16

Recovery from Failure: Remaining Issues

▶ Dealing with failures when we cannot pinpoint a failure.

(“A few failure claims (at-most-f)”).
▶ The unbounded number of rounds considered during view-changes:

We do not want to have to reconsider the entire ledger during recovery.

Solution: the checkpoint protocol

▶ After committing for all rounds up-to-ρ,
replicas can broadcast a Checkpoint for round ρ.

▶ After receiving f + 1matching Checkpoint messages for round ρ:
At-least one good replica committed in round ρ→ Save to copy that commit decision!

▶ After receiving n− f matching Checkpoint messages for round ρ:
One can create a checkpoint certificate.

Use checkpoint certificates to reduce the size of ViewChange messages:

Only include the last checkpoint certificate and details on rounds after that checkpoint



16/16

Recovery from Failure: Remaining Issues

▶ Dealing with failures when we cannot pinpoint a failure.

(“A few failure claims (at-most-f)”).
▶ The unbounded number of rounds considered during view-changes:

We do not want to have to reconsider the entire ledger during recovery.

Solution: the checkpoint protocol

▶ After committing for all rounds up-to-ρ,
replicas can broadcast a Checkpoint for round ρ.

▶ After receiving f + 1matching Checkpoint messages for round ρ:
At-least one good replica committed in round ρ→ Save to copy that commit decision!

▶ After receiving n− f matching Checkpoint messages for round ρ:
One can create a checkpoint certificate.

Use checkpoint certificates to reduce the size of ViewChange messages:

Only include the last checkpoint certificate and details on rounds after that checkpoint



16/16

Recovery from Failure: Remaining Issues

▶ Dealing with failures when we cannot pinpoint a failure.

(“A few failure claims (at-most-f)”).
▶ The unbounded number of rounds considered during view-changes:

We do not want to have to reconsider the entire ledger during recovery.

Solution: the checkpoint protocol

▶ After committing for all rounds up-to-ρ,
replicas can broadcast a Checkpoint for round ρ.

▶ After receiving f + 1matching Checkpoint messages for round ρ:
At-least one good replica committed in round ρ→ Save to copy that commit decision!

▶ After receiving n− f matching Checkpoint messages for round ρ:
One can create a checkpoint certificate.

Use checkpoint certificates to reduce the size of ViewChange messages:

Only include the last checkpoint certificate and details on rounds after that checkpoint


