
ResilientDB: Global Scale Resilient 
Blockchain Fabric*

Suyash Gupta Sajjad Rahnama Jelle Hellings
Mohammad Sadoghi

Exploratory Systems Lab
University of California Davis

*Proceedings of the VLDB Endowment, Vol. 13, No. 6.



• Jacobsen et al., Blockchain Landscape and AI Renaissance: The Bright Path Forward. Middleware (Tutorials) 2018: 2:1
2



Types of Blockchain Systems
• Permissionless à Open Access

• Anyone can participate.

• Identities of the replicas unknown.

• Face blockchain forks. 

• Permissioned (Our focus) à Restricted Access

• Only a selected group of replicas, although untrusted can participate.

• Identities of the replica known a priori.

3



At the core of any Blockchain application is a 
Byzantine Fault-Tolerant (BFT) consensus protocol.

Primary

Malicious

Crashed
Client

4



Challenges For Geo-Scale Blockchains

5

Real-world inter- and intra-cluster communication costs in terms of the ping round-trip times (which 

determines latency) and bandwidth (which determines throughput). Measurements taken on Google 

Cloud using clusters of n1 machines (replicas) that are deployed in six different regions.



Limitations of Existing Consensus Protocols

6

The normal-case metrics of BFT consensus protocols in a system with z clusters, each with n replicas of 

which at most f , n > 3f , are Byzantine. GeoBFT provides the lowest global communication cost per 

consensus decision and operates decentralized.



Vision Geo-Scale Byzantine Fault-Tolerance

7



Each cluster runs PBFT to 
select, locally replicate, and 

certify a client request.

Primary at each cluster 
shares the certified client 

request with other clusters.

GeoBFT Protocol

Local Replication Inter-cluster Sharing Ordering and Execution
Order the certified
requests, execute them,
and inform local clients.

GeoBFT is a topology-aware protocol, which groups replicas into clusters. Each 

cluster runs the PBFT consensus protocol, in parallel and independently.

8



Client

R2,1

R2,2

R2,3

PC2

ReplyLocal Request Local Replication

Client

R1,1

R1,2

R1,3

PC1

Global 
Sharing

Local
Sharing

Cluster 1
C1

Cluster 2
C2

9

Local PBFT 
Consensus on T1

Local PBFT 
Consensus on T1



Local Replication (PBFT)

• First practical Byzantine Fault Tolerant Protocol.

• Tolerates up to f failure out of 3f+1 replicas 

• Three phases of which two require quadratic communication complexity.

• Safety is always guaranteed and Liveness is guaranteed in periods of partial synchrony.

• View-Change protocol for replacing malicious primary

10



PBFT Civil Execution

Client

Replica 1

Replica 2

Byzantine 
Replica

Primary

T

Pre-Prepare Prepare Commit Client 
Request

11

Construct certificates 
that include T and n-f 

Commit messages.



Inter-Cluster Sharing

PC1

R2,1

R2,2

R2,3

PC2

Local PhaseGlobal Phase

12

The Primary PC1 sends a certificate that includes the client request and commit 

messages from n-f replicas of Cluster C1 .



Ordering and Execution

13

• GeoBFT orders requests deterministically.

• For i < j, requests of Cluster Ci are executed before 

requests of cluster Cj.

• For example: requests of C1 are executed before C2 .



Implementation on ResilientDB

14

Client 
Requests

Prepare & Commit 
messagesInput

Network

Message from
Clients and Replicas

NetworkBatching

Worker

Certify

Execute

Output

Certificates
from other clusters

Message to 
Replicas or Clients

ResilientDB associates a multi-threaded deep-pipelined architecture with each replica.

ResilientDB is open-sourced at https://resilientdb.com/

https://resilientdb.com/


Ledger (Blockchain) Management

15

• In ResilientDB, ith block in the ledger contains the ith executed request.

• In each round of GeoBFT, each replica executes z requests, each belonging to a different 

cluster Ci , 1 <= i <= z. 

• Hence, in each round, each replica creates z blocks.

• To ensure immutability, each block includes both client requests and exchanged certificates.



Evaluation on ResilientDB

17

• Google cloud used for deploying replicas and clients.

• Each replica used 8-core Intel Skylake CPUs and had access to 16 GB memory.

• Total 160K clients deployed on eight 4-core machines.

• Workload provided by Yahoo Cloud Serving Benchmark (YCSB).

• Replicas deployed across six different regions: Oregon, Iowa, Montreal, 

Belgium, Taiwan and Sydney. 

• Primaries for centralized protocol placed at Oregon (highest bandwidth).



18

Impact of Geo-Scale Deployments

Throughput as a function of the number of clusters; zn = 60 replicas.



19

Throughput as a function of the batch size; z = 4 and n = 7.

Impact of Request Batching



Conclusions and Final Remarks

20

• For achieving faster local replication, other efficient BFT protocols, such as 

PoE, can be employed.

• Modern cryptographic techniques such as Threshold signatures can be used 

in place of sending n-f Commit messages.

• If a cluster does not have a request, it can send “no-op” messages.

• GeoBFT optimizes consensus by reducing global communication costs.

• Parallel local replication helps to increase system throughput.

• GeoBFT is a topology-aware protocol.



References

21

1. S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow., 13(6):868–883, Feb. 2020.

2. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation, pages 

173–186. USENIX Association, 1999.

3. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002. 

doi:10.1145/571637.571640.

4. M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on 

Principles of Distributed Computing, PODC, pages 347–356. ACM, 2019.

5. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Symposium on 

Operating Systems Principles, SOSP, pages 45–58. ACM, 2007.

6. Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, and David Zage. Steward: Scaling byzantine fault-tolerant 

replication to wide area networks. IEEE Transactions on Dependable and Secure Computing, 7(1):80–93, 2010. doi:10.1109/TDSC.2008.53.

7. S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation, CoRR, vol. abs/1911.00838, 2019.


