
IBM Research

Accelerating Database Workloads by
Software-Hardware-System Co-design
Rajesh Bordawekar and Mohammad Sadoghi
IBM T. J. Watson Research Center

ICDE 2016 Tutorial

IBM Research
Outline
• Acceleration Landscape

– Answering Why, What, and How to Accelerate?
• Acceleration Opportunities in Database Workloads

– FPGAs (e.g., Data Streams)
– System Model
– Programming Model
– Representational Model
– Algorithmic Model

– GPUs (e.g., Disk-based Databases & Database Utilities)
• Conclusions and Future Directions

2R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM ResearchWhy Hardware Accelerators?
• Large & complex control units

– Roughly 95% of chip resources (transistors) are dedicated to control units
– Solution: Introduce simplified custom processors for specialized tasks

• Memory wall & Von Neumann bottleneck
– Limited bandwidth between CPUs and memory (bandwidth mismatch)
– Shared physical memory and system bus for both data and code
– Solution: Couple custom processors with private local memory and embedding code as logic

• Redundant memory accesses
– Incoming data is forced to be written to main memory before it is read again by CPUs for processing
– Solution: Channel data directly to custom processors

• Power Consumption
– Higher transistor density together with higher clock speed results in superlinear increase in power

consumption and a greater need for heat dissipation
– Solution: Use many low-frequency, but specialized, chips

Caveat: Most existing custom hardware lack flexibility
and simplicity granted when using general-purpose processors

3R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM ResearchHow to Accelerate?

• Data Parallelism

– Single instruction, multiple data (SIMD):

DB2 BLU, SAP Hana, Oracle Dual-format,

Microsoft Columnstore Indexes, MonetDB

– Data Partitioning

• Task Parallelism

– Executing many concurrent and

independent threads over the data

– Data Replication

• Pipeline Parallelism

– Decomposing a task into sequence of

subtasks

• Co-processor Design

– Offloading computation to accelerators

(a co-operative computational model)

• Co-placement Design

– Placing accelerator on the path of data

(partial computation or best effort computation)

4R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Accelerator Landscape

C
om

m
od

ity

S
pe

ci
al

iz
ed

Hardware
Multi-threading

Single-Instruction
Multiple Data (SIMD)

SSE,AVX,VSX,
Oracle SPARC DAX

Graphics Processing
Unit (GPU)

Nvidia and AMD GPUs

Field-programmable
Gate Array (FPGA)

Xilinx and Altera FPGAs

Application-Specific
Integrated Circuits

5R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Acceleration Technology Map

Response
Time

Data
Volume

f1

f

< 1 … 100 micro-seconds

< 1 … 100 milli-seconds

Gigabyte Terabyte Petabyte

Interactive
Analytics

< 1 … 100 seconds

> 10 minutes

Application Specific
Integrated Chip

Field Programmable
Gate Arrays

General Purpose
Processors

Graphic Processors

6R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

IBM Research
What to Accelerate?

� Disk-based Databases
– OLTP and OLAP
– Relational, MOLAP, NoSQL (e.g., Graph, RDF/XML/JSON Databases)

� In-memory Databases
– Integrated (OLAP and OLTP) Systems, Embedded Databases
– Pure OLAP Systems, NoSQL (e.g., Graph, RDF/XML Databases)

� Streaming Data Processing Systems
– SQL and Complex-Event Processing

� Database Utilities
– Compression, Encoding/Decoding, Statistics Generation, Query Plan Generation

� Database Extensions
– Analytics (e.g., Top-K Queries, Time-series, Clustering, Association Rules, Spatial)

� Distributed Data Processing Systems (Disk-based and In-memory)
– Distributed Key-Value Middleware (e.g., Memcached)
– MapReduce Systems (e.g., Hadoop with HDFS)

7R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

FPGA Acceleration
(Module I)

8R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

1. Compute: Configurable logic blocks (CLBs) consisting
of Lookup Tables (LUTs) + SRAM

2. Memory: Registers, Distributed RAMs, and Block RAMs
3. Communication: Configurable interconnects

What is an FPGA?

9R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: http://www.vlsi-world.com

IBM Research
FPGA Design Flow

Figure Credits: http://www.design-reuse.com 10R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

(2) Mapping

(4) Routing

(1) Logic Synthesis

(3) Placement

FPGA Programming Process

11R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: George Mason University, FPGA Devices & FPGA Design Flow

IBM Research
Acceleration Design Space

System Model

Programming Model

Representational Model

Algorithmic Model

GPU/FPGFA

Co-placement
Design Co-processor

Design

Hardware Description Language
(VHDL, Verilog)

Higher-level Language
(OpenCL & Streams-C)

Static Compiler
(Glacier) Dynamic Compiler

(FQP)

GPU/FPGFA

CPU

Static
Circuits

Parametrized Circuits
(Skeleton Automata, fpga-ToPSS,

OPB, FQP, Ibex, IBM Netezza)
Parametrized

Topology
(FQP)

Indexing
(Propagation)

Bi-directional Flow
(Handshake Join)

Top-down Flow
(SplitJoin)

Multi-query Optimization
(Rete-like Network)

Boolean Formula
Precomputation

(Ibex)

Parameterized Segments
(FQP)

Temporal/Spatial
Instructions

(Q100)

Host

CPU

Host

12R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

Programming Models
(Compilation)

13R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

14R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Mueller, Teubner, Alonso

Static Compiler: SQL-to-FPGA Mapping

Mueller, Teubner, Alonso Streams on wires: a query compiler for FPGAs. VLDB’09
Mueller, Teubner, Alonso. Glacier: a query-to-hardware compiler. SIGMOD ’10

constructing complex queries from basic composable (but static) logic blocks

IBM Research

Representational Models
(Parameterization)

15R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

Query: //a/b/c//d

16R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Teubner, Woods, Nie

Teubner, Woods, Nie. Skeleton automata for FPGAs: reconfiguring without reconstructing. SIGMOD ’12

Parametrized Circuits: Skeleton Automata

decomposing non-deterministic finite-state automata into (i) structural skeleton (logic) and (ii) reconfigurable conditions (memory)

IBM Research

17R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Woods, Woods, Teubner, Alonso

Woods, Teubner, Alonso. Complex event detection at wire speed with FPGAs.. VLDB’10

Parametrized Circuits: Flexible, Pipelined Partitioning

generalized pipeline design to support arbitrary-size partitioning using only neighbor-to-neighbor communication (states swap)

IBM Research

18R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Woods, Alonso, Teubner

Woods, Teubner, Alonso, Less watts, more performance: An intelligent storage engine for data appliances, SIGMOD’13
Woods, Istvan, Alonso, Ibex - an intelligent storage engine with support for advanced SQL off-loading, PVLDB’14

Parametrized Circuits: Off-loading Partial Computation

co-operative hardware (best-effort computation) and software (pre-computing arbitrary Boolean selection conditions) model

IBM Research

OPB

OPBOPB

OPB OPB

OPB

OPB OPB

OPB OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

FQP on FPGA
I/O

Interface
Stream R
Stream S

Queries

Result streams

Tuple

Online Programmable-Block (OPB)

Operator

Choose
FQP topology

LoadSynthesize

Hardware
design-verification-

realization-test

19R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Parametrized Circuits & Topology: Flexible Query Processor (FQP)

constructing complex queries from composable reconfigurable logic blocks, where composition itself is reconfigurable

IBM Research

OPBOPB

OPBOPB

OPB OPB

OPB

OPB OPB

OPB OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

FQP on FPGA
I/O

Interface
Stream R
Stream S

Queries

Result streams

Tuple

Online Programmable-Block (OPB)

Choose
FQP topology

LoadSynthesize

Hardware
design-verification-

realization-test

20R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Parametrized Circuits & Topology: Flexible Query Processor (FQP)

constructing complex queries from composable reconfigurable logic blocks, where composition itself is reconfigurable

IBM Research

OPBOPB

OPBOPB

OPB OPB

OPB

OPB OPB

OPB OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

FQP on FPGA
I/O

Interface
Stream R
Stream S

Queries

Result streams
Tuple

Online Programmable-Block (OPB)

Choose
FQP topology

LoadSynthesize

Hardware
design-verification-

realization-test

21R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Parametrized Circuits & Topology: Flexible Query Processor (FQP)

constructing complex queries from composable reconfigurable logic blocks, where composition itself is reconfigurable

IBM Research

OPBOPB

OPBOPB

OPB OPB

OPB

OPB OPB

OPB OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

OPB

FQP on FPGA
I/O

Interface
Stream R
Stream S

Queries

Result streams
Tuple

Online Programmable-Block (OPB)

Choose
FQP topology

LoadSynthesize

Hardware
design-verification-

realization-test

22R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Parametrized Circuits & Topology: Flexible Query Processor (FQP)

constructing complex queries from composable reconfigurable logic blocks, where composition itself is reconfigurable

IBM Research

Stream R

Stream S
Query

Buffer Manager-R

Block ID Buffer
Manager-S

M
ux

Stream S
Query

Stream R

OP-Block

Window Buffer-R Tuple n+2 Tuple n+1 Tuple n

Window Buffer-S Tuple mTuple m+1Tuple m+2

Result

Processing Unit

Bypass
Unit

Coordinator Unit

Query Buffer

Operator 1Operator 2

Sel <Att,Val> <Cond>Prj <Att>

23R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, JacobsenFigure Credits: Najafi, Sadoghi, Jacobsen

Parametrized Circuits: Online Programmable-blocks (OPB) Internals

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

a general reconfigurable logic blocks supporting selection, project, and join operations

IBM Research

S
tre

am
 R

S
tream

 S

FQP: Query Programming

Instructions for
OP-Block #2

OP-Block #1

Instructions for
OP-Block #1

OP-Block #3

Window-R

Window-S

Processing Unit

OP-Block #2

PriceID
9784313

Pric
e

ID

R.ID =
S.ID

Initialize
OP-Block

R.Price > 10Initialize
OP-Block

ResetSelectResetJoin

1521

1721

R.Price > 10 R.ID = S.ID

CREATE STREAM SEL_OUT AS
SELECT *
FROM Stream R
WHERE R.Price > 10;

CREATE STREAM JOIN_OUT AS
SELECT *
FROM SEL_OUT[Rows 100], Stream S[Rows 100]
WHERE SEL_OUT.ID = S.ID;

24R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

IBM Research

S
tre

am
 R

S
tream

 S

FQP: Query Programming

Instructions for
OP-Block #2

OP-Block #1 OP-Block #3

Window-R

Window-S

Processing Unit

OP-Block #2

PriceID
9784313

Pric
e

ID

R.ID =
S.ID

Initialize
OP-Block

Select

ResetJoin

1521

1721

R.Price > 10 R.ID = S.ID

CREATE STREAM SEL_OUT AS
SELECT *
FROM Stream R
WHERE R.Price > 10;

CREATE STREAM JOIN_OUT AS
SELECT *
FROM SEL_OUT[Rows 100], Stream S[Rows 100]
WHERE SEL_OUT.ID = S.ID;

25R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

IBM Research

S
tre

am
 R

S
tream

 S

FQP: Query Programming

OP-Block #1 OP-Block #3

Window-R

Window-S

Processing Unit

OP-Block #2

PriceID
9784313

Pric
e

ID

Join

1521

1721

R.Price > 10 R.ID = S.ID

CREATE STREAM SEL_OUT AS
SELECT *
FROM Stream R
WHERE R.Price > 10;

CREATE STREAM JOIN_OUT AS
SELECT *
FROM SEL_OUT[Rows 100], Stream S[Rows 100]
WHERE SEL_OUT.ID = S.ID;

26R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Select

IBM Research
FQP: Query Execution

S
tre

am
 R

S
tream

 S

OP-Block #1 OP-Block #3

Window-R

Window-S

Processing Unit

OP-Block #2

Select Join

R.Price > 10

4313

R.ID = S.ID

Output

1521

1721

Filter: R.Price < 10

27R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Operation OPB Instruction Programming Latency

Projection 5 cycles 40ns

Join 5 cycles 40ns

Reset 4 cycles 32ns

Bypass 2+2 cycles 32ns

IBM Research
FQP: Query Execution

S
tre

am
 R

S
tream

 S

OP-Block #1 OP-Block #3

Window-R

Window-S

Processing Unit

OP-Block #2

Select Join

1721

R.Price > 10

4313

R.ID = S.ID

Match

Output

1521

1721

Filter: R.Price < 10

28R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. Flexible query processor on FPGAs. PVLDB’13
Najafi, Sadoghi, Jacobsen. Configurable hardware-based streaming architecture using online programmable-blocks,. ICDE’15

Operation OPB Instruction Programming Latency

Projection 5 cycles 40ns

Join 5 cycles 40ns

Reset 4 cycles 32ns

Bypass 2+2 cycles 32ns

1521

IBM Research

29R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, JacobsenFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. The FQP vision: Flexible query processing on a reconfigurable computing fabric, SIGMOD Record’15

Parametrized Segments: Vertical Query & Data Partitioning

supporting arbitrary-size schema given a fixed wiring/routing-budget through a vertically partitioning of query and data

IBM Research

30R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Wu, Lottarini, Paine, Kim, Ross

Wu, Andrea, Timothy, Kim, Ross. Q100: The Architecture and Design of a Database Processing Unit. ASPLOS’14
Wu, Lottarini, Paine, Kim, Ross. The Q100 Database Processing Unit. IEEE Micro’15

Specialized Processing Unit: Horizontal Query Partitioning

supporting arbitrary-size query given a fixed logic-budget through horizontally partitioning of query into pipelined stages

IBM Research

31R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Wu, Lottarini, Paine, Kim, Ross

Wu, Andrea, Timothy, Kim, Ross. Q100: The Architecture and Design of a Database Processing Unit. ASPLOS’14
Wu, Lottarini, Paine, Kim, Ross. The Q100 Database Processing Unit. IEEE Micro’15

Specialized Processing Unit: Horizontal Query Partitioning

supporting arbitrary-size query given a fixed logic-budget through horizontally partitioning of query into pipelined stages

IBM Research

32R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Francisco: IBM PureData System for Analytics Architecture A Platform for High Performance Data Warehousing and Analytics, IBM Redbook’14
The Netezza FAST Engines™ Framework A Powerful Framework for High-Performance Analytics. Netezza White Paper’08

IBM Netezza: FPGA-Accelerated Streaming Technology (FAST) Engines™

a commercial success of using parameterizable circuit design for offloading query computation within IBM Netezza appliance

IBM Research

Algorithmic Models
(Balancing Data Flow vs. Control Flow)

33R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

providing ease of the development and deployment cycle by running C program on soft-cores

34R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Labrecque, Singh, Shum, Jacobsen

fpga-ToPSS: Event Processing Design Landscape

Sadoghi, Labrecque, Singh, Shum, Jacobsen, Efficient event processing through reconfigurable hardware for algorithmic trading, PVLDB’10
Sadoghi, Singh, Jacobsen. Towards highly parallel event processing through reconfigurable hardware. DaMoN’11
Sadoghi, Singh, Jacobsen. fpga-ToPSS: line-speed event processing on FPGAs. DEBS’11

IBM Research

35R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Labrecque, Singh, Shum, Jacobsen

fpga-ToPSS: Event Processing Design Landscape

Sadoghi, Labrecque, Singh, Shum, Jacobsen, Efficient event processing through reconfigurable hardware for algorithmic trading, PVLDB’10
Sadoghi, Singh, Jacobsen. Towards highly parallel event processing through reconfigurable hardware. DaMoN’11
Sadoghi, Singh, Jacobsen. fpga-ToPSS: line-speed event processing on FPGAs. DEBS’11

supporting changes to queries by storing it in off-chip memory while hiding latency by storing static queries in on-chip memory

IBM Research

36R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Labrecque, Singh, Shum, Jacobsen

fpga-ToPSS: Event Processing Design Landscape

Sadoghi, Labrecque, Singh, Shum, Jacobsen, Efficient event processing through reconfigurable hardware for algorithmic trading, PVLDB’10
Sadoghi, Singh, Jacobsen. Towards highly parallel event processing through reconfigurable hardware. DaMoN’11
Sadoghi, Singh, Jacobsen. fpga-ToPSS: line-speed event processing on FPGAs. DEBS’11

coupling logic & dedicated on-chip memory and eliminating global communication by horizontal data partitioning

IBM Research

37R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Labrecque, Singh, Shum, Jacobsen

fpga-ToPSS: Event Processing Design Landscape

Sadoghi, Labrecque, Singh, Shum, Jacobsen, Efficient event processing through reconfigurable hardware for algorithmic trading, PVLDB’10
Sadoghi, Singh, Jacobsen. Towards highly parallel event processing through reconfigurable hardware. DaMoN’11
Sadoghi, Singh, Jacobsen. fpga-ToPSS: line-speed event processing on FPGAs. DEBS’11

encoding each query as a custom logic block for maximum parallelism

IBM Research

providing ease of the development and deployment cycle by running C program on soft-cores

Percentage of Line-rate Utilization

38R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Labrecque, Singh, Shum, Jacobsen

fpga-ToPSS: Event Processing Design Landscape

Sadoghi, Labrecque, Singh, Shum, Jacobsen, Efficient event processing through reconfigurable hardware for algorithmic trading, PVLDB’10
Sadoghi, Singh, Jacobsen. Towards highly parallel event processing through reconfigurable hardware. DaMoN’11
Sadoghi, Singh, Jacobsen. fpga-ToPSS: line-speed event processing on FPGAs. DEBS’11

supporting changes to queries by storing it in off-chip memory while hiding latency by storing static queries in on-chip memorycoupling logic & dedicated on-chip memory and eliminating global communication by horizontal data partitioning encoding each query as a custom logic block for maximum parallelismachieving line-rate processing

IBM Research

39R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Javed, Tarafdar, Singh, Palaniappan, Jacobsen

Global Query Plan: Rete-like Operator Network

exploiting inter- and intra-parallelism by constructing a global query plan

IBM Research

40R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Sadoghi, Javed, Tarafdar, Singh, Palaniappan, Jacobsen

Global Query Plan: Rete-like Operator Network

Sadoghi, Javed, Tarafdar, Singh, Palaniappan, Jacobsen, Multi-query stream processing on FPGAs,, ICDE’12

compiling multiple queries into a global query plan on FPGAs

IBM Research

41R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Teubner Mueller, Roy, Teubner, Gemulla

Redefining Joins Using Data Flow

Teubner Mueller. How soccer players would do stream joins. SIGMOD’11
Roy, Teubner, Gemulla, Low-latency handshake join, PVLDB’14

replicate and fast-forward tuples to substantially reduce latency at the cost of additional control flow introducing bi-directional data flow to naturally direct streams in opposite directions to eliminate complex control flow

IBM Research

42R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Teubner Mueller, Roy, Teubner, Gemulla

Redefining Joins Using Data Flow

Teubner Mueller. How soccer players would do stream joins. SIGMOD’11
Roy, Teubner, Gemulla, Low-latency handshake join, PVLDB’14

replicate and fast-forward tuples to substantially reduce latency at the cost of additional control flow introducing bi-directional data flow to naturally direct streams in opposite directions to eliminate complex control flow

IBM Research

43R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Teubner Mueller, Roy, Teubner, Gemulla

Redefining Joins Using Data Flow

Teubner Mueller. How soccer players would do stream joins. SIGMOD’11
Roy, Teubner, Gemulla, Low-latency handshake join, PVLDB’14

replicate and fast-forward tuples to substantially reduce latency at the cost of additional control flow introducing bi-directional data flow to naturally direct streams in opposite directions to eliminate complex control flow

IBM Research
Revisiting Data Flow Model

JC JC JC JC

Coordinator Distributor

JC JC JC JC

bi-directional data-flow top-down data-flow
(b)(a)

replicate-forward

44R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

rethinking the data flow to eliminate the control flow

IBM ResearchSplitJoin: Introducing Top-Down Flow Architecture

Basic Architecture for
Stream Joins

PU
Window Buffer-S

Window Buffer-R
R

S

Result

45R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. SplitJoin: A Scalable, Low-latency Stream Join Architecture with Adjustable Ordering Precision. USENIX ATC’16

rethinking the data flow to eliminate the control flow & split the join into concurrent/independent “store” & “process” steps

IBM ResearchSplitJoin: Introducing Top-Down Flow Architecture

Tuple-RTuple-S
Time

Window-R

Split

BufferWindow-S

Buffer

JC

46R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. SplitJoin: A Scalable, Low-latency Stream Join Architecture with Adjustable Ordering Precision. USENIX ATC’16

rethinking the data flow to eliminate the control flow & split the join into concurrent/independent “store” & “process” steps

IBM Research

Buffer

Window-R /N

Buffer

Buffer

Window-S /N

Buffer

Window-S /N

1

1 N

Pathi

TCPath k, Depth y

Depth 1
Depth 2

Depth Log
b

k

α

TP

JC1 JCN

Input Data Distribution
Network

Result Gathering
Network

SplitJoin: Introducing Top-Down Flow Architecture

47R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credits: Najafi, Sadoghi, Jacobsen

Najafi, Sadoghi, Jacobsen. SplitJoin: A Scalable, Low-latency Stream Join Architecture with Adjustable Ordering Precision. USENIX ATC’16

rethinking the data flow to eliminate the control flow & split the join into concurrent/independent “store” & “process” steps

IBM Research

48R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

Future Directions/Open Questions
• What is the best initial topology given a query workload as a prior?

– Can we construct a topology in order to reduce routing (i.e., to reduce the wiring complexity) or to
minimize chip area overhead (i.e., to reduce the number of logic blocks).

• What is the complexity of query assignment to a set of custom hardware blocks?
– A poorly chosen query assignment may increase query execution time, leave some blocks unutilized,

negatively affect energy use, and degrade the overall processing performance.
• How to formalize query assignment algorithmically (e.g., developing cost models)?

– Going beyond classical join reordering and physical plan selections, there is a whole new perspective
on how to apply instruction-level and fine-level memory-access optimization.

– What is the most efficient method for wiring custom operators to minimize the routing distance?
– How to collect statistics during query execution, and how to introduce dynamic re-wiring and

movement of data given a fixed hardware topology?
• Given the topology and the query assignment formalism, how do we generalize from single-query

optimization to multi-query optimization?
• How do we extend query execution on hardware to co-processor & co-placement designs by distributing

and orchestration query execution over heterogeneous hardware (e.g., CPUs, FPGAs, and GPUs) by
exploring different placement arrangement on the path of data?

Najafi, Sadoghi, Jacobsen. The FQP vision: Flexible query processing on a reconfigurable computing fabric, SIGMOD Record’15

IBM Research

GPU Acceleration
(Module II)

49R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Graphics Processing Units (GPUs): Background
• Designed primarily as specialized processors for accelerating key graphics workloads (e.g.,

computer graphics, animation, virtual reality, games, etc.)
– Wide-spread usage from enterprise servers, embedded (e.g., drones), to mobile (cell

phones)
• Implements various core graphics operators in hardware, e.g., resterization, texture mapping, or

shader processing
– Most core operations involve matrix and vector calculations over floating point numbers

• GPUs built as a powerful parallel processing system for floating point calculations
– Support large memory bandwidth to match the real-time graphics constraints

• Increasing usage in non-graphics applications (general purpose/GP) due to significant compute
and memory capabilities
– Scientific computing, deep learning, drones, self-driving cars….

• Examples: Nvidia Pascal (Tesla P100), AMD Radeon Polaris, Nvidia TX1,..

50R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Graphics Processing Units: System Architecture
• Modern GPUs are, in reality, massively parallel computers on a chip
• Key design factors: Power consumption and compute/memory capabilities
• Compute cores and memory packaged as a card and connected to a host system (CPU and

memory) via a CPU-GPU interface (usually, PCI-e)
• GPU cards have additional ports to connect with each other
• GPU memory (device memory) connected the compute cores via high speed interconnect

– Device memory size limits the amount of ”on-device” data. Current device memory size 24 GB.
– GPU internal memory bandwidth very high (700 GB+ for the Nvidia Pascal GPU)

51R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM ResearchNvidia Pascal (Tesla P100) Card

GPU

Memory

Interconnection
Interface

52R. Bordawekar & M. Sadoghi - ICDE 2016 TutorialFigure Credit: https://devblogs.nvidia.com/parallelforall/inside-pascal/

IBM Research
Graphics Processing Units: Processor Architecture
• Massively multi-threaded data-parallel processor.
• Follows the Single-instruction Multiple Thread (SIMT) programming model
• Built using computational blocks: Symmetric Multiprocessors, Texture processing Clusters and

Graphics Processing Clusters
• Supports multiple types of memories

– Off-chip device memory
– Off-chip texture memory
– On-chip local memory, and constant memory
– On-chip L1 and L2 caches, and registers

• Supports FP64, FP32, and FP16 types (in addition to the integer family)
• Peak FP32 GFLOPs 10.6 TF, FP64 5.3 GFLOPs
• Memory Bandwidth: 700 GB/s+
• Power consumption: 300 W

53R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Nvidia Pascal (Tesla P100) Processor Architecture

On-chip cache

PCI-e Connection

Inter-GPU
connection

Memory
Controller

Compute Cores

54R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Nvidia Pascal Micro-architecture

Texture
Memory

Single-precision
Compute Unit

55R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Graphics Processing Units: Usage
• GPUs are hybrid accelerators: need CPUs to control the execution of functions

– GPU-based code invoked as kernels from the CPU host
– Data is usually copied to and from the host

• GPU usually connected to the CPU hosts via PCI-e connection (peak 16 GB/s unidirectional)
• New interconnection fabric, called NVLINK, will be used for both CPU-GPU and inter-GPU

connections (peak 40 GB/s bidirectional)
• GPUs can be connected together to form a multi-GPU system, that can be managed by a group

of host CPUs
– GPUDirect provides fast P2P data transfer across GPUs

• Factors affecting GPU system configurations (choice of GPU)
– Type of computation: Compute-bound (Single or Double precision) or memory bound
– Memory footprint of the workload
– Compute intensity

56R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
General Purpose GPUs (GPGPUs): Execution Model
• GPU execution model is a hybrid accelerator model

– Host system and GPU resources (compute and memory) are managed and used
separately

– GPU functions executed as non-blocking kernels
– Nvidia’s unified programming model (UVM) enables operations on the global memory

address space that spans host and device memories
• GPU device execution model supports multiple types of parallelism

– Massive data parallelism via light-weight threads
– Shared address space programming
– Distributed memory programming via using thread-blocks

• GPU is a throughput-oriented processor
– Massive data parallelism is needed to hide memory access costs

57R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
GPGPU Programming Models
• GPGPU programming models support massive data parallelism using the single-instruction

multiple-thread (SIMT) approach
• Two widely used programming languages (C/C++ extensions): CUDA and OpenCL
• The programming languages provide user abstractions:

– to partition the computations over multiple threads using different parallelization
approaches

– to allocate data in different memory regions
– to manage the mapping and scheduling of threads over underlying hardware

• Additional workload-specific libraries (e.g., CUBLAS, CUSPARSE, CUDNN..)

58R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Key GPGPU Performance and Functionality Issues
• GPU is a throughput machine

– Need to use a large of threads to hide memory latency
• Memory access performance depends on many factors

– Best performance when logically consecutive threads access physically closer location
(GPU hardware coalesces multiple thread accesses)

– Read-only memory accesses perform much better than update accesses
– Random reads optimized using texture memory

– Accesses to host memory via Unified Virtual Memory is not fast
• Conditional execution between threads leads to thread serialization

– Warps share the instruction counter
• Unaligned and non-uniform memory access degrade performance due to un-coalesced

memory accesses
• Atomic operations restricted to 32 and 64 bit variables
• For performance, most data structures need to be array-based
• Limited support for dynamic memory allocation

59R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Issues in exploiting GPUs for Database Processing
� Database processing not compute (FLOPS) intensive

– Traditional database execution I/O bound
– Most in-memory calculations involve memory traversals and comparisons

– Non-iterative. Calculate-to-access ratio very low (usually 1)
– Many situations involve non-contiguous memory accesses (e.g., hash tables)

– Only numerically-intensive tasks include OLAP reductions, statistics calculations, and
classical analytics extensions

– Transaction processing update-intensive
• Data being processed usually larger than the GPU device memory
• Data stored in specialized formats

– Row-wise records, Columnar stores, Log files, Tree-based indices
� A variety of data types: Need to process data for GPU operations

– Variable-length character arrays (Varchars), Double-precision, Date, BLOBs
• Fast access to storage sub-systems

60R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Potential Exploitation of GPUs in Database Processing

• Exploitation of GPU’s High internal Bandwidth
– Sorting (for ordering/grouping elements, Join operations)
– Hashing (for Joins, Indexing)
– Predicate Evaluations (fast comparisons)
– Dynamic programming for selecting query plans

• Exploitation of GPU’s Numerical Capabilities
– OLAP Reductions
– Utilities: Compression, Encryption, Statistical Calculations
– Analytical Extensions: Top-K, Text, Spatial, and Time-series analytics

61R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

• OLAP Acceleration
– Jedox

• Graph Analytics
– MapD, gpudb, BlazeGraph

• Database functional acceleration (hashing, sorting)
• Relational query execution on the hybrid CPU+GPU systems

– Sqream, DeepCloud Whirlwind
• GPU Support for key database infrastructures, e.g., index
• GPU acceleration of XML workloads

GPU-Accelerated Database in Practice

62R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
GPU exploitation for Database Processing
� OLAP (Both relational and MOLAP)

� Exploiting GPU’s memory bandwidth for data access and grouping
� Exploiting GPU’s numerical capabilities for data aggregation

� Optimized GPU libraries for key database primitives (Need to consider multiple types, sizes,
and other constraints)
– Sorting
– Hash functions (e.g., bloom filters) and its applications for joins, grouping
– Joins, Selection and Projection

– Hash-Join vs. Sorted-Join
– Revisit Nested-loop Joins- may perform better on GPUs due to regular access patterns

– Graph Analytics: Trees, graphs, DAGs (for NoSQL data processing)
– Statistical libraries: Histograms, Frequency counting, Unique items, Sampling,
– Analytical libraries: String processing, Top-K,..

63R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
OLAP Acceleration: Fast Data Access

Relational data stored in the columnar format
MOLAP Data

Hierarchical OLAP Data

Linear Map

• Linear array can be accessed in parallel by very large numbers of threads (in millions)
• For data in the device memory, read-only data access bandwidth can exceed 300 GB/s
• For random reads, data can be mapped to texture memory
• For very large data sets, GPUs can access data directly from the host main memory using unified virtual

memory
64R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Hash-Based Group By/Aggregate

KEY Value

93 5

23 2

93 1

23 5

93 0

93 1000

Parallel H
M

C

reation

Key Aggregated
Value

23 7

93 1006

Simple_Table
Hash Map

23 7

93 1006
Parallel
Probe

Result

Towards a Hybrid Design for Fast Query Processing in DB2 with BLU Acceleration Using Graphical Processing Units: A Technology
Demonstration, S. Meraji, B. Schiefer, L. Pham, L. Chu, P. Kokosielis, A. Storm, W. Young, C. Ge, G. Ng, K. Kanagaratnam, SIGMOD16 (To
appear)

SELECT C1, SUM(C2) FROM Simple_Table GROUP BY C1

65R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
OLAP Acceleration: Parallel Grouping and Aggregation
• Grouping involves creating hash maps in

the GPU’s memories
• Use Murmur or mod hash functions
• Each insertion into the hash map

simultaneously performs the reduction
operation (e.g., add or max)

• The GPU kernel can use thousands of
threads. Each thread
– Accesses the input data
– Computes hash value
– Inserts into the target location and

uses atomic operation to execute the
reduction operation

• Multi-level hash maps used to compute
final result

• GPU’s massive data parallelism enables
extremely fast reduction operations
– Sum, Min, Max
– Average, Median, etc.

• Nvidia GPUs provide fast atomic
operations on 32-bit values
– atomicAdd(), atomicCAS()
– Can be extended to support 64-bit

variables
• For smaller number of groups, hash maps

can be created in the shared memory

Towards a Hybrid Design for Fast Query Processing in DB2 with BLU Acceleration Using Graphical Processing Units: A Technology
Demonstration, S. Meraji, B. Schiefer, L. Pham, L. Chu, P. Kokosielis, A. Storm, W. Young, C. Ge, G. Ng, K. Kanagaratnam, SIGMOD16 (To
appear)

66R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
End-to-end OLAP Acceleration via Group-By Aggregation

Key Aggregated
Value

23 7

93 1006

Key Aggregated
Value

113 99

89 345

Key Aggregated
Value

24 22

200 1006

Key Aggregated
Value

78 89

539 890

Key Aggregated
Value

46 50

893 780

GPU Device Memory

GPU Threads

Key Aggregated Value

Local (Per thread-block) Hash Maps

Global Hash Map
67R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
GPU-Accelerated Utilities: Sorting
• GPU can exploit its memory capabilities for

sorting datasets that can fit in the device
memory (16 GB)

• GPU-based sorting works very well for
aligned data sets (key and values)
– The best GPU sort is based on the radix

sort algorithm (Duane Sort)
• Sorting large datasets on GPUs uses hybrid

approaches
– GPU sort is used as a kernel by the CPU

sorting algorithm
– Aligned versions of the original

key/values used for the GPU sort
– Can operate on very large datasets

DuaneSort DuaneSort DuaneSort DuaneSort

Radix-partitioned Unsorted

Original Unsorted Data

Sorted data

68R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

Merrill, Grimshaw. High Performance and Scalable Radix Sorting: A Case Study of Implementing Dynamic Parallelism for GPU Computing. Parallel Computing Letters’11
Cho, Brand, Bordawekar, Finkler, Kulandaisamy, Puri. PARADIS: An Efficient Parallel Algorithm for In-place Radix Sort., PVLDB’15

IBM Research
GPU-Accelerated Utilities: Hashing

• Hashing can exploit GPU’s high read-only
bandwidth (300 GB/s+)

• GPU acceleration better suited for hash
probing, rather than insertion which results in
random updates

• Performance also affected by atomic
operation supports
– Only supports aligned keys

• For data larger than device memory, hash
table built using unified virtual memory

• Examples: Cuckoo Hash, Hybrid CPU-GPU
hash, and Stadium Hash

Hash table

CPU CPU

insert(key, val)

getValue(key)

Host Memory

Device Memory

GPU Cores

Unified Virtual
Memory

69R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

Alcantara, Sharf, Abbasinejad, Sengupta, Mitzenmacher, Owens, Amenta. Real-time Parallel Hashing on the GPU. ACM TOG’09
R. Bordawekar, Nvidia.Evaluation of Parallel Hashing Techniques. GTC’14
Khorasani, Belviranli, Gupta, Bhuyan. Stadium Hashing: Scalable and Flexible Hashing on GPUs. PACT’15

IBM Research
Novel Data Management Applications of GPU
� Multi-GPU In-memory Multi-media Database

– Host CPU acts simply as a controller and request broker
– GPU device memory used as the primary storage subsystem, share the host memory as a

secondary persistent memory
– GPUs interact with each other via GPUDirect without involving the host

� GPU-accelerated Relational Scientific Database
– Can be built on any columnar storage (e.g., monetDB is being used for processing

astronomical data.)
– Structured region-based accesses suitable for GPU execution.

70R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
GPU Exploitation for Database Workloads: Summary
• Most data management workloads are not compute (FLOP) bound. Exception being reduction operations

in the OLAP scenario.
– GPU’s high internal bandwidth is the selling point
– Aggregation performance on GPU at least 4/5 faster than CPU (SIMD+MT codes)

• Data management workload process large quantities of data
– Bandwidth of the host-GPU connection is critical (PCI-e or NVLINK)
– Device memory size key for usability
– Direct connection with the storage infrastructure necessary

• Data layout optimizations required for GPU usage
– Columnar layout more suited than row store

• Multiple-GPU scenario more suitable for data management workloads
– Performance and capabilities of the GPUDirect functionality very relevant

• Closer connection with underlying network fabric required for using GPUs in latency-sensitive workloads
• GPU power consumption a key issue in database system building (e.g., appliances)

– Clusters of Low-power GPUs clusters may be an option

71R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

• Based on the co-processor model of acceleration
• Suitable workloads: Data Warehousing, OLAP, Graph Analytics, ETL Systems
• Factors to consider:

– Characteristics of the workloads: data size, type of data, runtime constraints
– System configuration issues

– Power limits
– Hardware configuration factors: Packaging and Cooling issues, Power supply
– Single node or multi-node scenarios

– Deployment model: On premise or service-based

Designing a GPU-accelerated Database System

72R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research
Multi-core CPU vs. GPU: Data Management Perspective

� CPUs have deeper and larger memory hierarchies than GPU
– Up to 3-level caches and can host multi-TB of main

memory
� Direct access to persistent storage subsystem (e.g., disks, and

SSDs)
� Multiple cores with multiple SMT threads, support for short-

vector SIMD parallelism (256-bit AVX2, 128-bit VSX). Very high
execution frequency (2.5 GHz+)

� Limited Main-Memory Bandwidth (100+ GB/s)
� Reasonable FLOPS performance
� Supports very fast atomic operations
� Can support any general data structure (e.g., linked lists)
� Can handle high degree of concurrent update operations
� Strengths: Support for generalized data structures, High

concurrent update performance, Direct connection to
memory and storage subsystems, Large memory and disk
capacities (in TBs)

� Weakness: Low main memory bandwidth, low computation
capacity and degree of parallelism

� GPUs have much smaller device memory (currently, 6 GB max) and
need to pass through PCI link to access the host memory

� GPUs need to go via the PCI-E link, and the CPU host to access
persistent storage subsystem

� Thousands of low frequency (730 MHz) cores, SIMT execution. Very
limited SIMD support (warp-level)

� High device-memory bandwidth (300+ GB/s, as high as 700 GB/s)
� High FLOP performance for single- and double-precision

performance
� Fast single-precision atomic operations, slow double-precision

atomic operations
� Data-structures need to be array-based. No support for pointer-

based traversals.
� Irregular memory accesses (in particular, writes) slower.

Performance degrades when thread count increases.
� Strengths: High internal memory bandwidth, compute

capability, asynchronous execution
� Weaknesses: Access via PCI link, limited memory capability,

Low concurrent update performance, constraints on data
structures

73R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

IBM Research

• What are the emerging workloads?
– Internet of Things (IoT), BlockChain, Analytics,..

• What are the novel and distributive deployment models?
– Cloud, mobile, and appliances

• What are new constraints
– Power, cost, and real-time processing

• What are the untapped architecture opportunities?
– NVRAM, active memory (e.g., Micron Automata Processor), active networking

• How to achieve line-rate data processing (what level of parallelism can be attained)?

• How to overcome the hardware inflexibility and development cost challenges?

• How/Where to place hardware accelerators in query execution pipelines in practice?

• What are the power and energy consumption benefits of hardware acceleration?

74R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

Future Directions/Open Questions

IBM Research

Thank You!
QA

75R. Bordawekar & M. Sadoghi - ICDE 2016 Tutorial

