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RAM vCPUs
AWS1 24 TB 448
MSA2 12 TB 416
GC3 12 TB 416

Cloud Computing Trends
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Large core counts Large main-memoryThe rise of cloud 
computing

1 https://aws.amazon.com/ec2/instance-types/high-memory/

2 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/

3 https://cloud.google.com/compute/docs/machine-types
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Distributed Commit Protocols

• Two-phase Commit (2PC)


• Very good general solution and 
widely used 

• Adds overhead per transaction 

• Can we avoid using it?

Challenge ???
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Distributed Deterministic 
Transaction Processing

• Provides strict serializability


• Avoids non-deterministic transaction aborts due to 
concurrency control


• Removes the coordination for transaction-commit from 
the critical path


• Key limitations: requires knowledge of full read/write 
sets of transactions prior to execution
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Calvin Overview 
Thomson et al. SIGMOD’12
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Calvin Overview 
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Client Transactions

Single-threaded Sequencing
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Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded 
thread-to-transaction 

Conservative 5-phase execution
DB

Batches of Sequenced Transactions
Is it possible to avoid the two single-threaded pre-execution steps and 

improve parallelism during execution?

Calvin Overview 
Thomson et al. SIGMOD’12
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Key Ideas in Q-Store

✓Combine sequencing and scheduling into a single step 

✓Unified queue-oriented processing paradigm 

✓Global execution priority invariant 

✓ Support speculative and conservative executions of queues 

✓ Support multiple isolation levels
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Client Transactions Client Transactions

Calvin Vs. Q-Store
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Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Client Transactions

Multi-threaded Planning

Batches of Sequenced 
Transactions

Calvin Vs. Q-Store

Batches of queues of 
transaction fragments
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Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded 
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Conservative 5-phase execution

DB

Client Transactions

Multi-threaded Planning

Multi-threaded 
thread-to-queue 
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Client Transactions

Multi-threaded Planning

Multi-threaded 
thread-to-queue 

Speculative or Conservative

DB

Batches of queues of 
transaction fragments

Processing Transactions in Q-Store

Execution Phase 

Process queues while maintaining the global 

execution priority invariant: 

Operations belonging to higher priority 
execution-queues must always be 

executed before executing any 
conflicting lower priority operations. 

Planning Phase 

1. Breakdown transactions into fragments 

2. Create prioritized execution-queues of 

transaction fragments  

3. Enforce a strict serial order of conflicting 

fragments within an execution-queue
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Clients
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Communication 
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In-Memory Storage

Remote EQs

DataIndex
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Evaluation Environment
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Hardware

32 (16 clients + 16 servers) AWS EC2 c5.2xlarge instances 
with:  
CPU: 8 vCPUs 
RAM: 16GB

Workload
YCSB: 1 table, RMW and Read-only operations, Uniform and 
Zipfian distribution 
TPC-C: 9 tables, Payment and NewOrder

Software
Operating System: Ubuntu LTS 16.04.3 
Compiler: GCC with –O2 compiler optimizations
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Effect of Varying Batch Size
• 8 read and 8 RMW operations per transaction 
• 50% multi-partition transactions 
• Uniform distribution

Q-Store eliminates the bottleneck of single-threaded sequencing 
scheduling and scales well while increasing the batch size
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Effect of Varying Batch Size
• 8 read and 8 RMW operations per transaction 
• 50% multi-partition transactions 
• Uniform distribution

Q-Store eliminates the bottleneck of single-threaded sequencing 
scheduling and scales well while increasing the batch size

22x
95%
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Q-Store’s performance is comparable to non-deterministic protocols 
with 0% MPT

Effect of Multi-Partition Transactions
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Q-Store’s performance is comparable to non-deterministic protocols 
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Calvin is sensitive to multi-partition transactions while Q-Store is not

Effect of Multi-Partition Transactions
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Effect of Multi-Partition Transactions



41

Best performance with multi-partition transactional workload

10x

~30x

Effect of Multi-Partition Transactions
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Conclusions and Future Work

• We can improve the performance and efficiency of deterministic 
transaction processing by using queue-oriented transaction 
processing principles 

• Q-Store improves system throughput over Calvin by up to 22x 


• Q-Store improves system throughput over non-deterministic 
protocols by up to two orders of magnitude


• Future work include studying and developing queue-oriented 
protocols for byzantine fault-tolerance in database systems


