T S
I— @ EXPOLab G‘l ResilientD8 (\-/\A’\-é\'
_ Security, Privacy Reloaded ExpoDf

Creativity Unfolded

Q-Store: Distributed, Multi-Partition
Transactions via Queue-Oriented Execution and
Communication

Thamir M. Qadah* Suyash Gupta Mohammad Sadoghi
School of Electrical and Department of Computer Department of Computer
Computer Engineering Science Science

PURDUE UCDAVIS UCDAVIS

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA

SI * Also With Umm Al-Qura University, Makkah, Saudi Arabia

Cloud Computing Trends

The rise of cloud
computing

J Large core counts
1

] Large main-memory
|

RAM VCPUS

-------------- J-------------- Il I = = = = = = = = = = =

AWST & 24 TB . 448

--

GC3 | I5TE 416

T https://aws.amazon.com/ec?2/instance-types/high-memory/

2 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/

3 https://cloud.google.com/compute/docs/machine-types

amazon

web services

O

Google Cloud

/

Microsoft
Azure

Distributed Commit Protocols

Challenge 27?7
Two-phase Commit (2PC)

Very good general solution and
widely used

Adds overhead per transaction

Can we avoid using it?

Distributed Deterministic
[Transaction Processing

Provides strict serializability

Avoids non-deterministic transaction aborts due to
concurrency control

Removes the coordination for transaction-commit from
the critical path

Key limitations: requires knowledge of full read/write
sets of transactions prior to execution

Calvin Overview
Thomson et al. SIGMOD’12

Calvin Overview
Thomson et al. SIGMOD’12

| Client Transactions

u

t——

|

L Single-threaded Sequencing

Calvin Overview
Thomson et al. SIGMOD’12

Client Transactions

t——

|

Single-threaded Sequencing

l Batches of Sequenced Transactions

Single-threaded Scheduling

Calvin Overview
Thomson et al. SIGMOD’12

| Client Transactions

t———

|

L Single-threaded Sequencing

l Batches of Sequenced Transactions

Single-threaded Scheduling

Multi-threaded
thread-to-transaction
Conservative 5-phase execution

Calvin Overview
Thomson et al. SIGMOD’12

| Client Transactions

t——

|

Single-threaded Sequencing
_ ot — T

s it possible to avoid the two single-threaded pre-execution steps and
| improve parallelism during execution?

|)
v
Multi-threaded

thread-to-transaction
Conservative 5-phase execution

Key ldeas in Q-Store

‘ —— - = — = - ——

v Combine sequencing and scheduling into a single step

V' Unified queue-oriented processing paradigm

V' Global execution priority invariant

V' Support speculative and conservative executions of queues

V' Support multiple isolation levels

10

Key ldeas in Q-Store

v/ Combine sequencing and scheduling into a single step

v Unified queue-oriented processing paradigm

V' Global execution priority invariant

Vv’ Support speculative and conservative executions of queues

v Support multiple isolation levels

's - - . - —

11

Calvin Vs. Q-Store

Client Transactions

M

Client Transactions

12

Calvin Vs. Q-Store

Client Transactions

2

Single-threaded Sequencing

Batches of Sequenced
Transactions

Single-threaded Scheduling

Client Transactions

-

Multi-threaded Planning

Batches of queues of
transaction fragments

13

Calvin Vs. Q-Store

Client Transactions

2

Single-threaded Sequencing

Batches of Sequenced
Transactions

Single-threaded Scheduling

v

Multi-threaded
thread-to-transaction
Conservative 5-phase execution

M

Client Transactions

-

Multi-threaded Planning

Batches of queues of

transaction fragments

Multi-threaded
thread-to-queue
Speculative or Conservative

14

Processing Transactions in Q-Store

Planning Phase

| 1. Breakdown transactions into fragments

2. Create prioritized execution-queues of
transaction fragments

3. Enforce a strict serial order of conflicting

fragments within an execution-queue

Execution Phase
| Process queues while maintaining the global

execution priority invariant:

execution-queues must always be
executed before executing any
conflicting lower priority operations.

Operations belonging to higher priority

Client Transactions

-

Multi-threaded Planning

Batches of queues of

transaction fragments

Multi-threaded
thread-to-queue
Speculative or Conservative

15

Unified Queue-Oriented Transaction Processing

Clients

;

Network Buffers

Transaction
Queues

Worker
Threads

Communication
Threads

Remote EQs

In-Memory Storage

I Data |

Remotely
Planned EQs

Locally
Planned EQs

Batch Meta-data

16

Unified Queue-Oriented Transaction Processing

Clients

;

Network Buffers

¢
Transaction Communication
Thread Remotely
Queues reads Planned EQs
Worker Remote EQs LOCE]”y
Threads Planned EQs

In-Memory Storage

I Data |

Batch Meta-data

17

Unified Queue-Oriented Transaction Processing

Clients

;

Network Buffers

§

¢
Transaction Communication
Thread Remotely
Queues reads Planned EQs
Worker Remote EQs LOCE]”y
Threads Planned EQs

In-Memory Storage

I Data |

Batch Meta-data

18

Unified Queue-Oriented Transaction Processing

Clients

;

Network Buffers

§

¢
Transaction Communication
Thread Remotely
Queues reads Planned EQs
Worker Remote EQs LOCE]”y
Threads Planned EQs

In-Memory Storage

I Data |

Batch Meta-data

19

‘ Q-Store

- Planning
thread 1

High-priority
Queues

BVl i) I
| ro(a) | ri(e)

/élient

Transactions

N

~ Planning
thread 2

wa(e)

210)

Low-priority
Queues

‘ Q-Store

- Planning
thread 1

W2(C)

ro(a)

ro(e)

High-priority
Queues

r1(a)

w1(C)

ri(e)

Planning
~ thread 2

wa(e)

r4(f)

Low-priority
Queues

Q-Store

- Planning
thread 1

High-priority
Queues

W2(C)

w1(C)

Planning
~ thread 2

Low-priority
Queues

Q-Store 2 : BatchMetaData|
Planning
thread 1
BatchMetaData| ¢
BatchMetaData|, —
Planning | e
thread 2 *
f
N— —

Q-Store 6 e 6 | BatchMetaData| ~
Planning -
thread 1 s
r1(a)
6 | | BatchMetaData| ¢«
w1(C)
BatchMetaData|, —
Planning
thread 2

Q-Store

| 6 | BatchMetaData| ~

—ACK |
Planning (Q1b) :

thread 1 |e—

ﬂ
oE -

BatchMetaData |

=
H~

2
o

ACK
(q11)

BatchMetaData |, —

Planning N
thread 2

BatchMetaData ‘

Q-Store

thread

Planning “

BatchMetaData

H B

BatchMetaData | — III
Planning | .
thread 2 f
N— —__/

Q-Store

Planning |
thread 1

- ACK \
(a1a)

ACK
(q1e)

ACK
(a2b)

Planning
thread 2

(924)

ACK

6 | 6 BatchMetaData| ~—

BatchMetaData|

BatchMetaData |, —

ﬁ Q-Store | | 6 6 BatchMetaData| ~ T

Planning |
thread 1

ACK 6 | 6 BatchMetaData | (~

6 | 6 | BatchMetaData|,—

Planning (g21)
thread 2

Q-Store | 6 | 6 BatchMetaData| [;

Planning |
thread 1

BatchMeteData| ¢

Client
Resp.
Tq, T2

BatchMetaData |, —

Planning
thread 2

Q-Store 5 6 | 6 BatchMetaData| [;

Planning |
thread 1

6 | 6 BatchMetaData| ¢~

BatchMetaData |, —

Planning
thread 2

Q-Store

Planning |
thread 1

Planning
thread 2

6 | e BatchMetaData| TN

6 | 6 BatchMetaData | (¢~

6 | 6 BatchMetaData

31

Q-Store 3 6 6 BatchMetaData| ~— ™
Planning |
thread 1
6 - 6 | BatchMetaData| ¢~
... I —
6 | 6 | BatchMetaData |~
Planning | |
thread 2

(d2e) 32

Q-Store || | BatchMetaData | ~

Planning |
thread 1

BatchMetaData|

Client
Resp. ; | |
T3 T4 | | |

«\ 1 | | BatchMetaData |~

Planning
thread 2

33

Evaluation Environment

32 (16 clients + 16 servers) AWS EC2 c¢5.2xlarge instances
with:

CPU: 8 vCPUs
RAM: 16GB

Hardware

YCSB: 1 table, RMW and Read-only operations, Uniform and

Workload Zipfian distribution
TPC-C: 9 tables, Payment and NewOrder

Operating System: Ubuntu LTS 16.04.3

Software . . | o
Compiler: GCC with -O2 compiler optimizations

34

e 8 read and 8 RMW operations per transaction
Uniform distribution

e 50% multi-partition transactions

Effect of Varying Batch Size

35

-\\\H\ \\\\\\\ I
€b)
=R
> O

e M e &

| Anﬁ_U | | |

Q) | |
- — — + - - - = = == = = —|— —

| AW | | |

| ¥ | | |

| , | | |
\\k’l\l\l\ﬂ\\\f\\\\f\\\\,\\\

| 1"'1 | |

| | ~ | |
-llill*

| | | | N

| | | | s

| | | | .
el i e il I P B 2

| | | | A

| | | | .

| | | | | .
el el welie il it Rl Bl
) (@) O o o O o
(o) Lo <t ™M @\ —

SPU0dag

320

puooog Jod SUOTIORSURI],

160 320

30

40

20
Batch Sizes (103)

10
Q-Store eliminates the bottleneck of single-threaded sequencing

10 20 40 80 160
Batch Sizes (10°)
scheduling and scales well while increasing the lbatch size

Effect of Varying Batch Size

e 8 read and 8 RMW operations per transaction
e 50% multi-partition transactions
e Uniform distribution

60| ! | | |
| | | | | | |
| | | | | | |
5 sol .«
o \ \ \] \ \ \
s 20 | 4 |#=k CALVIN
s . |l | 4 |m=E Q-Store
o, 'g | | | : | |
: sl 4
o 8 | | o |
'43 @) | | \: | |
: + 0 f QRO
| | | |
E T] | | * | |
- - o et
| | | " e’ | | T
D 10 20 40 80 100 320 0

D 10 20 40 80

Batch Sizes (10°) Batch Sizes (103)

Q-Store eliminates the bottleneck of single-threaded sequencing
scheduling and scales well while increasing the batch size

Effect of Multi-Partition Transactions

* =% CALVIN O -0 MVCC -l (Q-Store
o =0 MaaT = NO WAIT OO TIMESTAMP
10°

f—
-
o1

Transactions per Second

I

I

I

I

0 10 15 50 75 100
% of Multi-partition Transactions

Q-Store’s performance is comparable to non-deterministic protocols
with 0% MPT

37

Effect of Multi-Partition Transactions

J# =%k CALVIN 0 -0 MVCC B-B Q-Store

=0 MaaT x=> NO WAIT =@ TIMESTAMP
=15l g
- x [' |]
8 9 /, |]
<b) P m I |
op) | I |
o I | |
D) [| | I
o, | | |
2 : .'.. .L :
o | - ol e |
."3105__|_______________—_— _I____._._.*_.
o) [| |]
n L | I | 1
s | ‘ ;
© - N A L
i | o) o

0 75 100

% of Multi-partition Transactions

Q-Store’s performance is comparable to non-deterministic protocols
with 0% MPT

38

Effect of Multi-Partition Transactions

* =% CALVIN O -0 MVCC -l (Q-Store
o=e MaaT x=>_ NO WAIT OO TIMESTAMP

Transactions per Second

I
I
I
[
0 10 15 50 75 100
% of Multi-partition Transactions

Calvin is sensitive to multi-partition transactions while Q-Store is not
|

Effect of Multi-Partition Transactions

* =% CALVIN O -0 MVCC -l (Q-Store
o=e MaaT x=>_ NO WAIT OO TIMESTAMP

f—
-
©)]

f—
-
o1

Transactions per Second

75 100
% of Multi-partition Transactions

40

Effect of Multi-Partition Transactions

%* =% CALVIN -0 MVCC Bl (Q-Store
o =0 MaaT x=>_ NO WAIT =@ TIMESTAMP

Transactions per Second

% of Multi-partition Transactions

Best performance with multi-partition transactional workload

41

Conclusions and Future Work

We can improve the performance and efficiency of deterministic
transaction processing by using queue-oriented transaction
processing principles

Q-Store improves system throughput over Calvin by up to 22x

Q-Store improves system throughput over non-deterministic
protocols by up to two orders of magnitude

Future work include studying and developing queue-oriented
protocols for byzantine fault-tolerance in database systems

42

