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Cloud Computing Trends

The rise of cloud
computing
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Distributed Commit Protocols

Challenge 27?7
Two-phase Commit (2PC)

Very good general solution and
widely used

Adds overhead per transaction

Can we avoid using it?



Distributed Deterministic
[Transaction Processing

Provides strict serializability

Avoids non-deterministic transaction aborts due to
concurrency control

Removes the coordination for transaction-commit from
the critical path

Key limitations: requires knowledge of full read/write
sets of transactions prior to execution
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Calvin Overview
Thomson et al. SIGMOD’12

| Client Transactions

t——

|

Single-threaded Sequencing
_ ot — T

s it possible to avoid the two single-threaded pre-execution steps and
| improve parallelism during execution?

| )
v
Multi-threaded

thread-to-transaction
Conservative 5-phase execution




Key ldeas in Q-Store

‘ —— - = — = - ——

v Combine sequencing and scheduling into a single step

V' Unified queue-oriented processing paradigm

V' Global execution priority invariant

V' Support speculative and conservative executions of queues

V' Support multiple isolation levels
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Processing Transactions in Q-Store

Planning Phase

| 1. Breakdown transactions into fragments

2. Create prioritized execution-queues of
transaction fragments

3. Enforce a strict serial order of conflicting

fragments within an execution-queue

Execution Phase
| Process queues while maintaining the global

execution priority invariant:

execution-queues must always be
executed before executing any
conflicting lower priority operations.

Operations belonging to higher priority

Client Transactions

-

Multi-threaded Planning

Batches of queues of

transaction fragments

Multi-threaded
thread-to-queue
Speculative or Conservative
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Unified Queue-Oriented Transaction Processing

Clients
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Network Buffers

Transaction
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Threads
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Batch Meta-data
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Evaluation Environment

32 (16 clients + 16 servers) AWS EC2 c¢5.2xlarge instances
with:

CPU: 8 vCPUs
RAM: 16GB

Hardware

YCSB: 1 table, RMW and Read-only operations, Uniform and

Workload  Zipfian distribution
TPC-C: 9 tables, Payment and NewOrder

Operating System: Ubuntu LTS 16.04.3

Software . . | o
Compiler: GCC with -O2 compiler optimizations
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e 8 read and 8 RMW operations per transaction
Uniform distribution

e 50% multi-partition transactions

Effect of Varying Batch Size
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Effect of Varying Batch Size

e 8 read and 8 RMW operations per transaction
e 50% multi-partition transactions
e Uniform distribution
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Effect of Multi-Partition Transactions
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Q-Store’s performance is comparable to non-deterministic protocols
with 0% MPT
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Effect of Multi-Partition Transactions
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Effect of Multi-Partition Transactions
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Effect of Multi-Partition Transactions
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Effect of Multi-Partition Transactions
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Conclusions and Future Work

We can improve the performance and efficiency of deterministic
transaction processing by using queue-oriented transaction
processing principles

Q-Store improves system throughput over Calvin by up to 22x

Q-Store improves system throughput over non-deterministic
protocols by up to two orders of magnitude

Future work include studying and developing queue-oriented
protocols for byzantine fault-tolerance in database systems
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