
Q-Store: Distributed, Multi-Partition
Transactions via Queue-Oriented Execution and

Communication

1

Mohammad Sadoghi
Department of Computer

Science

Suyash Gupta
Department of Computer

Science

Thamir M. Qadah*
School of Electrical and
Computer Engineering

* Also With Umm Al-Qura University, Makkah, Saudi Arabia

RAM vCPUs
AWS1 24 TB 448
MSA2 12 TB 416
GC3 12 TB 416

Cloud Computing Trends

2

Large core counts Large main-memoryThe rise of cloud
computing

1 https://aws.amazon.com/ec2/instance-types/high-memory/

2 https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/

3 https://cloud.google.com/compute/docs/machine-types

3

Distributed Commit Protocols

• Two-phase Commit (2PC)

• Very good general solution and
widely used

• Adds overhead per transaction

• Can we avoid using it?

Challenge ???

4

Distributed Deterministic
Transaction Processing

• Provides strict serializability

• Avoids non-deterministic transaction aborts due to
concurrency control

• Removes the coordination for transaction-commit from
the critical path

• Key limitations: requires knowledge of full read/write
sets of transactions prior to execution

5

Calvin Overview
Thomson et al. SIGMOD’12

6

Calvin Overview
Thomson et al. SIGMOD’12

Client Transactions

Single-threaded Sequencing

7

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Batches of Sequenced Transactions

Calvin Overview
Thomson et al. SIGMOD’12

8

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded
thread-to-transaction

Conservative 5-phase execution
DB

Batches of Sequenced Transactions

Calvin Overview
Thomson et al. SIGMOD’12

9

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded
thread-to-transaction

Conservative 5-phase execution
DB

Batches of Sequenced Transactions
Is it possible to avoid the two single-threaded pre-execution steps and

improve parallelism during execution?

Calvin Overview
Thomson et al. SIGMOD’12

10

Key Ideas in Q-Store

✓Combine sequencing and scheduling into a single step

✓Unified queue-oriented processing paradigm

✓Global execution priority invariant

✓ Support speculative and conservative executions of queues

✓ Support multiple isolation levels

11

Key Ideas in Q-Store

✓Combine sequencing and scheduling into a single step

✓Unified queue-oriented processing paradigm

✓Global execution priority invariant

✓ Support speculative and conservative executions of queues

✓ Support multiple isolation levels

12

Client Transactions Client Transactions

Calvin Vs. Q-Store

13

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Client Transactions

Multi-threaded Planning

Batches of Sequenced
Transactions

Calvin Vs. Q-Store

Batches of queues of
transaction fragments

14

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded
thread-to-transaction

Conservative 5-phase execution

DB

Client Transactions

Multi-threaded Planning

Multi-threaded
thread-to-queue

Speculative or Conservative

DB

Batches of Sequenced
Transactions

Batches of queues of
transaction fragments

Calvin Vs. Q-Store

15

Client Transactions

Multi-threaded Planning

Multi-threaded
thread-to-queue

Speculative or Conservative

DB

Batches of queues of
transaction fragments

Processing Transactions in Q-Store

Execution Phase

Process queues while maintaining the global

execution priority invariant:

Operations belonging to higher priority
execution-queues must always be

executed before executing any
conflicting lower priority operations.

Planning Phase

1. Breakdown transactions into fragments

2. Create prioritized execution-queues of

transaction fragments

3. Enforce a strict serial order of conflicting

fragments within an execution-queue

Unified Queue-Oriented Transaction Processing

16

Clients

Network Buffers

Transaction
Queues

Communication
Threads

Batch Meta-data

Worker
Threads

Remotely
Planned EQs

Locally
Planned EQs

In-Memory Storage

Remote EQs

DataIndex

Unified Queue-Oriented Transaction Processing

17

Clients

Network Buffers

Transaction
Queues

Communication
Threads

Batch Meta-data

Worker
Threads

Remotely
Planned EQs

Locally
Planned EQs

In-Memory Storage

Remote EQs

DataIndex

Unified Queue-Oriented Transaction Processing

18

Clients

Network Buffers

Transaction
Queues

Communication
Threads

Batch Meta-data

Worker
Threads

Remotely
Planned EQs

Locally
Planned EQs

In-Memory Storage

Remote EQs

DataIndex

Unified Queue-Oriented Transaction Processing

19

Clients

Network Buffers

Transaction
Queues

Communication
Threads

Batch Meta-data

Worker
Threads

Remotely
Planned EQs

Locally
Planned EQs

In-Memory Storage

Remote EQs

DataIndex

20

Planning
thread 1

Q-Store

Client
Transactions

c

f

e

d

a
b

w1(c)

r1(a)

r2(a)

w2(c)

r1(e)

r2(e)

Planning
thread 2

r3(c)

w3(e)

r4(f)

w4(e)

q1c q1d q1e q1fq1a q1b

q2c q2d q2e q2fq2a q2b

High-priority
Queues

Low-priority
Queues

I

II

III

q1c q1d q1e q1fq1a q1b

q2c q2d q2e q2fq2a q2b

21

Q-Store

c

f

e

d

a
b

w1(c)r1(a)

r2(a)

w2(c) r1(e)

r2(e)

r3(c) w3(e)
r4(f)

w4(e)

Planning
thread 1

Planning
thread 2

High-priority
Queues

Low-priority
Queues

I

II

III

q1c q1d q1e q1fq1a q1b

q2c q2d q2e q2fq2a q2b

22

Q-Store

c

f

e

d

a
b

w1(c)r1(a)

r2(a) w2(c)

r1(e)

r2(e)

r3(c) w3(e) r4(f)

w4(e)

Planning
thread 1

Planning
thread 2

High-priority
Queues

Low-priority
Queues

I

II

III

BatchMetaData

q1e q1f

q2e q2f

BatchMetaData

q1c q1d

q2c q2d

BatchMetaData

q1a q1b

23

Exec-
thread 1-1

Q-Store

c

f

e

d

a
b

Exec-
thread 2-1

w1(c)

r1(a)

r2(a)

w2(c)

r1(e)

r2(e)

r3(c)

w3(e) r4(f)

w4(e)

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

q2a q2b
Planning
thread 1

Planning
thread 2

I

II

III

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

q1e q1f

q2e q2f

BatchMetaData

q1c q1d

q2c q2d

BatchMetaData

q1a q1b

24

Q-Store

c

f

e

d

a
b

w1(c)

r1(a)

r2(a)

w2(c)

r1(e)

r2(e)

r3(c)

w3(e) r4(f)

w4(e)

q2a q2b
Planning
thread 1

Planning
thread 2

I

II

III

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

q1e

q2e q2f

BatchMetaData

q1c

q2c q2d

BatchMetaData

q1a

25

Q-Store I

II

III

c

f

e

d

a
b

w1(c)

a

r2(a)

w2(c)

e

r2(e)

r3(c)

w3(e) r4(f)

w4(e)

q2a q2bACK
(q1b)

ACK
(q1d)

ACK
(q1f)

Planning
thread 1

Planning
thread 2

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

q1e

q2e

q2f

BatchMetaData

q1c

q2c

q2d

BatchMetaData

q1a

26

Q-Store

c

f

e

d

a
b

w1(c)

a

a

w2(c) e

e

r3(c)

w3(e)

r4(f)

w4(e)

q2a

q2b
Planning
thread 1

Planning
thread 2

I

II

III

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData
q2e

q2f

BatchMetaData

q1c

q2c

BatchMetaData

27

Q-Store

c

f

e

d

a
b

w2(c)

r3(c)

w3(e)

f

w4(e)

q2a
ACK
(q1a)

ACK
(q2d)

ACK
(q1e)

ACK
(q2b)

Planning
thread 1

Planning
thread 2

I

II

III

a

e

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

q2e

BatchMetaData

q2c

BatchMetaData

28

Q-Store

c

f

e

d

a
b

r3(c)

w3(e)

w4(e)

q2a

ACK
(q1c)

ACK
(q2f)

Planning
thread 1

Planning
thread 2

I

II

III

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

q2e

BatchMetaData

q2c

BatchMetaData

29

Q-Store

c

f

d

a
b

c

w4(e)

Client
Resp.
T1, T2

ACK
(q2a)

Planning
thread 1

Planning
thread 2

I

II

III

w3(e)

e

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

BatchMetaData

BatchMetaData

30

Q-Store

c

f

d

a
b

ACK
(q2c)

Planning
thread 1

Planning
thread 2

I

II

III

q2e
w4(e)

c

w3(e)

e

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

BatchMetaData

BatchMetaData

31

Q-Store

c

f

d

a
b

Planning
thread 1

Planning
thread 2

I

II

III

e
q2e
w4(e)

c

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

BatchMetaData

BatchMetaData

32

Q-Store

c

f

e

d

a
b

ACK
(q2e)

Planning
thread 1

Planning
thread 2

I

II

III

Exec-
thread 1-1

Exec-
thread 2-1

Exec-
thread 1-2

Exec-
thread 2-2

Exec-
thread 3-1

Exec-
thread 3-2

BatchMetaData

BatchMetaData

BatchMetaData

33

Q-Store

c

f

e

d

a
b

Client
Resp.
T3, T4

Planning
thread 1

Planning
thread 2

I

II

III

Evaluation Environment

34

Hardware

32 (16 clients + 16 servers) AWS EC2 c5.2xlarge instances
with:
CPU: 8 vCPUs
RAM: 16GB

Workload
YCSB: 1 table, RMW and Read-only operations, Uniform and
Zipfian distribution
TPC-C: 9 tables, Payment and NewOrder

Software
Operating System: Ubuntu LTS 16.04.3
Compiler: GCC with –O2 compiler optimizations

35

Effect of Varying Batch Size
• 8 read and 8 RMW operations per transaction
• 50% multi-partition transactions
• Uniform distribution

Q-Store eliminates the bottleneck of single-threaded sequencing
scheduling and scales well while increasing the batch size

36

Effect of Varying Batch Size
• 8 read and 8 RMW operations per transaction
• 50% multi-partition transactions
• Uniform distribution

Q-Store eliminates the bottleneck of single-threaded sequencing
scheduling and scales well while increasing the batch size

22x
95%

37

Q-Store’s performance is comparable to non-deterministic protocols
with 0% MPT

Effect of Multi-Partition Transactions

38

Q-Store’s performance is comparable to non-deterministic protocols
with 0% MPT

Effect of Multi-Partition Transactions

39

Calvin is sensitive to multi-partition transactions while Q-Store is not

Effect of Multi-Partition Transactions

40

Effect of Multi-Partition Transactions

41

Best performance with multi-partition transactional workload

10x

~30x

Effect of Multi-Partition Transactions

42

Conclusions and Future Work

• We can improve the performance and efficiency of deterministic
transaction processing by using queue-oriented transaction
processing principles

• Q-Store improves system throughput over Calvin by up to 22x

• Q-Store improves system throughput over non-deterministic
protocols by up to two orders of magnitude

• Future work include studying and developing queue-oriented
protocols for byzantine fault-tolerance in database systems

