
THE JOURNEY OF BUILDING GLOBAL-SCALE
RESILIENTDB BLOCKCHAIN FABRIC

Mohammad Sadoghi

1

Mohammad Sadoghi

Exploratory Systems Lab

Department of Computer Science

URCS Seminar Series

University of Rochester

November 5, 2021

Mohammad Sadoghi

(Principal Investigator)

Suyash Gupta, PhD

(Scalable Consensus Meta-Protocols)

Thamir Qadah, PhD

(Distributed & Coordination-free Concurrency)

Rohan Sogani, MSc

(Scaling Fabric via Sharding)

Priya Holani, MSc

(Scaling Fabric via Sharding)

Xinyuan Sun, MSc

(Scaling Fabric via RDMA)

Dhruv Krishnan, MSc

(Scaling Fabric via Sharding)

Shubham Pandey, MSc

(Scaling Fabric via RDMA)

Sajjad Rahnama, PhD

(Global Scale Consensus)

Jelle Hellings, PostDoc

(Fault-tolerant Complexity Analysis)

Creativity Unfolded
ExpoLab

Team

Haojun (Howard) Zhu, MSc

(Re-Configurable Consensus Protocols)

Alejandro Armas, BSc

(Re-engineering ResilientDB Toolkits)

Dakai Kang, BSc

(View-change-less Protocols)

3

SQL
Analytics

FPGA Acceleration: FQP (Flexible Query Processor)

[VLDB’10, ICDE’12, VLDB’13, ICDE’15, SIGMOD Record’15, ICDE’16, USENIX ATC’16, ICDCS’17, ICDE'18, TKDE'19]

Resilient Journey…

4

SQL
Analytics

SQL
Transactions

High-dimensional Indexing: (e.g., BE-Tree, BE-topK)

[SIGMOD’11, ICDE’12, TODS’13, ICDCS’13, ICDE’14, ICDCS’17, Middleware'17]

Resilient Journey…

5

SQL
Analytics

SQL
Transactions

Concurrency Control Protocols: (e.g., 2VCC, QueCC - Best Paper Award)

[VLDB’13, VLDB’14, VLDBJ’16, Middleware’16, TDKE’15, SIGMOD’15, ICDE’16, Middleware'18]

Co
nc

ur
re

nc
y

Pr
ot

oc
ol

s
Resilient Journey…

6

SQL
Analytics

SQL
Transactions

Concurrency Control Protocols: (e.g., 2VCC, QueCC - Best Paper Award)

[VLDB’13, VLDB’14, VLDBJ’16, Middleware’16, TDKE’15, SIGMOD’15, ICDE’16, Middleware'18]

QueCC: Queue-Oriented Planning and
Execution Architecture

Co
nc

ur
re

nc
y

Pr
ot

oc
ol

s
Resilient Journey…

7

SQL
Analytics

SQL
Transactions

HTAP Column-store: L-Store (Lineage-based Data Store)

[VLDB’12, ICDE’14, ICDCS’16, EDBT’18, TKDE’20 (2x) 34 filed US patents]

Graphs on SQL: (e.g., GRFusion) [SIGMOD’18, EDBT’18]

HTAP: Unifying Storage Layer

(Lineage-based Storage Architecture)

Co
nc

ur
re

nc
y

Pr
ot

oc
ol

s
Resilient Journey…

8

SQL
Analytics

SQL
Transactions

Agreement Protocols: (e.g., EasyCommit, Q-Store)

[EDBT’20, EDBT’18, DAPD’19]

HTAP: Unifying Storage Layer

(Lineage-based Storage Architecture)

SQL
Transactions

Agreement Protocols

Co
nc

ur
re

nc
y

Pr
ot

oc
ol

s
Resilient Journey…

9

SQL
Analytics

SQL
Transactions

Consensus Protocols: (e.g., GeoBFT, PoE, RCC, ByShard, RingBFT, Delayed Replication, CSP, Blockplane)

[VLDB’21, ICDE’21, EDTB’21, VLDB’20, ICDCS’20, ICDT’20, DISC'19 (2x), SC’19, ICDE'19, arXiv'19 (8x)]

Agreement Protocols

HTAP: Unifying Storage Layer

(Lineage-based Storage Architecture)

Resilient Consensus Protocols

Co
nc

ur
re

nc
y

Pr
ot

oc
ol

s
Resilient Journey…

Resilient Replication

Sharding (Isolation Semantics, Consistency Levels)

Global Distribution

Reconfigurable Network

Identity Management

Chain Management (off-chain, on-chain)

Applications: DeFi, Smart Contracts, IoT, Serverless

Delayed Replication [ICDT’20]

Proof-of-Execution [EDBT’21]

Analytics

(Read-only)

Layer 1 (e.g., Proof-of-Work) Layer 2 (e.g., PBFT, Po*)

Cross-chain Network

Resilient Concurrent Consensus [ICDE’21]

Recovery (View-change)

ByShard [VLDB’21]

Cluster Sending Primitive [DISC’19]

Waif-free BFT [DISC’19]

GeoBFT [VLDB’20]

Cerberus [arXiv’20]

Permissioned

Permissionless

Database Stack

RingBFT [arXiv’21]

BlockBench [SIGMOD’17]

Atomic Commitment [VLDB’20]

Cross-chain Deals [VLDB’20]

AHL [SIGMOD’19]

SharPer [SIGMOD’21]

Blockplane [ICDE’19]

Pe
rm

is
si

on
ed

 B
lo

ck
ch

ai
n

Th
ro

ug
h

th
e

Lo
ok

in
g

G
la

ss
 [I

C
D

C
S’

20
]

Storage Log

Query Optimization & Evaluation

Concurrency Control Protocols

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

11

Transaction Processing on Modern Hardware.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019

Fault-Tolerant Distributed Transactions on Blockchain.

 Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2021

Books

12

Books Transaction Processing on Modern Hardware.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019

Fault-Tolerant Distributed Transactions on Blockchain.

 Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2021

Press
Advancements TV With Ted Danson - CNBC, CityAM, Medium, Yahoo!

Finance, Market Insider, CoinDesk, Crypto Media, Davis Enterprise, Times
Union, WBOC TV/Radio

Quantifiable Resiliency

(Graduate Student Experiments)

13

14

Aloha Lake, Desolation Wilderness

15 Miles Long

2,500 Feet Elevation Gain

(8,700 Feet at Summit)

15

Tomales Point Trail, Point Reyes National Seashore

9.4 Miles Long

1,579 Feet Elevation Gain

Non-Quantifiable Resiliency

16

17

Proof-of-Execution: Reaching Consensus
Through Fault-Tolerant Speculation [EDBT’21]

Out-of-Order message processing to reduce replica idleness

Speculative Execution with revertible/divergent replicas &

 eager/irrevertible client commit

 introducing linear message complexity

18

Proof-of-Execution: Reaching Consensus
Through Fault-Tolerant Speculation [EDBT’21]

19

Proof-of-Execution: Reaching Consensus
Through Fault-Tolerant Speculation [EDBT’21]

PoE scales beyond 91 replicas, in presence

of failures, outperforms PBFT up to 43%

20

RCC: Resilient Concurrent Consensus
Paradigm [ICDE’21]

A wait-free meta-protocol…

Designate multiple replicas as primaries!

Run multiple parallel consensuses on each replica independently

Brief Announcement: Revisiting Consensus Protocols through Wait-free Parallelization. DISC 2019

21

RCC: Resilient Concurrent Consensus
Paradigm [ICDE’21]

Brief Announcement: Revisiting Consensus Protocols through Wait-free Parallelization. DISC 2019

Throughput up to 300,000 txns/s

(with failures)

Throughput up to 400,000 txns/s

(without failures)

22

A meta-protocol, locally running any BFT in parallel and independently

Global ordering provably requires only linear communication

Provably suffifi

 malicious primary is detectable and replaceable

GeoBFT: Global Scale Resilient

Consensus [VLDB’20]

23Brief Announcement: The Fault-Tolerant Cluster-sending Problem. DISC 2019

GeoBFT scales a permissioned blockchain

up to 60 replicas globally.

GeoBFT: Global Scale Resilient

Consensus [VLDB’20]

GeoBFT easily scales across 6 countries in

4 continents due to GeoBFT protocol.

24

The Fault-Tolerant Cluster-Sending

Problem [DISC’19]

Brief Announcement: The Fault-Tolerant Cluster-sending Problem. DISC 2019

formalizing the problem of sending a message from one Byzantine cluster to

another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(linear in the size of clusters)
XX:2 Byzantine Cluster-Sending in Expected Constant Communication

r1 r2

r3 r4

Cluster
(All Data)

Requests
(All Data)

e1 e2

e3 e4

Cluster
(European Data)

a1 a2

a3 a4

Cluster
(American Data)

Cluster Sending
(coordination)

Requests
(European Data)

Requests
(Mixed Data)

Requests
(American Data)

Figure 1 On the left, a traditional fully-replicated resilient system in which all four replicas each
hold all the data. On the right, a sharded design in which each resilient cluster of four replicas holds
only a part of the data.

We notice that well-known Byzantine primitives—such as consensus, interactive con-46

sistency, and Byzantine broadcasts [5, 8, 6, 7, 19]—are insu�cient to provide e�cient47

coordination between Byzantine clusters, as they either require large amounts of costly48

communication between all involved replicas (consensus and interactive consistency), or do49

not provide strong guarantees when supervised by Byzantine replicas (Byzantine broadcasts).50

Fortunately, several recent works studied cluster-sending and, more general, communication51

between Byzantine clusters. First, Hellings et al. [13] formalized the cluster-sending problem52

and provided worst-case optimal cluster-sending protocols. Unfortunately, these protocols are53

pessimistic in the sense that they operate under worst-case assumptions and do not optimize54

for other cases. Furthermore, these protocols require reliable communication for their opera-55

tions. Second, geo-scale aware consensus protocols such as Steward [1] and GeoBFT [12]56

incorporate geo-aware clustering in the system design of fully-replicated systems, this to57

reduce geo-scale communication in favor of local communication. Additionally, GeoBFT uses58

a specialized optimistic inter-cluster communication protocol. Unfortunately, this protocol59

requires a reliable coordinator to operate e�ciently, and has a costly remote view-change path60

to recover from coordinator failure. Third, the recently-proposed delayed-replication algorithm61

provides e�cient communication from Byzantine clusters to other participants [14]. Unfortu-62

nately, this algorithm presumes receivers are reliable and aims at minimizing communication63

per cluster replica, and not overall communication. Finally, we see several developments64

towards inter-chain communication in blockchain communities, e.g., sidechains, blockchain65

relays, and atomic swaps [11, 15, 17, 25]. Unfortunately, these techniques are deeply inter-66

twined with the design goals of blockchains in mind (e.g., cryptocurrency-oriented), and are67

not readily applicable to traditional consensus-based Byzantine clusters.68

Although cluster-sending and related techniques have received some attention, we must69

conclude that the current state-of-the-art does not yet provide a satisfactory approach70

for inter-cluster coordination. In this paper, we improve on ths situation by introducing71

probabilistic cluster-sending techniques. In specific, our main contributions are as follows:72

1. First, in Section 3, we introduce the cluster-sending step cs-step that attempts to send73

a value from a replica in the sending cluster to a replica in the receiving cluster in a74

verifiable manner and with a constant amount of inter-cluster communication.75

2. Then, in Section 4, we introduce the Synchronous Probabilistic Cluster-Sending protocol76

Pcs that uses cs-step with randomly selected replicas from the sending and receiving77

clusters to provide cluster-sending in expected constant steps.78

25

The Fault-Tolerant Cluster-Sending

Problem [DISC’19]

Brief Announcement: The Fault-Tolerant Cluster-sending Problem. DISC 2019

formalizing the problem of sending a message from one Byzantine cluster to

another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(linear in the size of clusters)10 Jelle Hellings, Mohammad Sadoghi

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).

26

Byzantine Cluster-Sending in Expected

Constant Communication [arXiv’21]

formalizing the problem of probabilistically sending a message from one

Byzantine cluster to another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(expected constant message complexity)
Anonymous author(s) XX:3

Table 1 A comparison of cluster-sending protocols that send a value from cluster C1 with nC1

replicas, of which fC1 are faulty, to cluster C2 with nC2 replicas, of which fC2 are faulty. For
each protocol P , Protocol specifies its name; Robustness specifies the conditions P puts on the
clusters; Message Steps specifies the number of messages exchange steps P performs (‡ indicates the
normal-case complexity when the coordinator in C1 is non-faulty); O. (Optimal) specifies whether P
has optimal message complexity; and U. (Unreliable) specifies whether P can deal with unreliable
communication. In this diagram, Ppcs is our Pruned Synchronous Probabilistic Cluster-Sending

protocol and Plcs is our Synchronous Probabilistic Linear Cluster-Sending protocol.

Protocol Robustness Message Steps O. U.
(expected) (worst)

PBS-cs [13] min(nC1 , nC2) > fC1 + fC2 fC1 + fC2 + 1 � �
PBS-cs [13] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 , nC2) � �

GeoBFT [12] nC1 = nC2 > 3 max(fC1 , fC2) fC2 + 1‡ �(fC1nC2) � �

T
hi

s
Pa

pe
r Ppcs nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 + 1)(fC2 + 1) � �

Ppcs nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 + 1)(fC2 + 1) � �

Plcs min(nC1 , nC2) > fC1 + fC2 4 fC1 + fC2 + 1 � �
Plcs min(nC1 , nC2) > 2(fC1 + fC2) 2 1

4 fC1 + fC2 + 1 � �
Plcs nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 , nC2) � �

3. Next, we propose pruned Pcs, a fine-tuned version of Pcs that guarantees termination.79

4. In Section 5, we propose the Synchronous Probabilistic Linear Cluster-Sending protocol80

Plcs, that uses cs-step with a specialized randomized scheme to select replicas, this to81

provide cluster-sending in expected constant steps and worst-case linear steps, which is82

optimal.83

5. Finally, in Section 6, we discuss how Pcs, Ppcs, and Plcs can operate in environments84

with asynchronous and unreliable communication.85

A summary of our findings in comparison with existing techniques can be found in Table 1.86

Furthermore, in Section 2, we introduce the necessary terminology and notation, in Section 7,87

we conclude on our findings, and, due to space considerations, Appendices A–E provide all88

proof details not included in the main paper.89

2 The Cluster-Sending Problem90

Before we present our probabilistic cluster-sending techniques, we first introduce all necessary91

terminology and notation. The formal model we use is based on the formalization of the92

cluster-sending problem provided by Hellings et al. [13]. If S is a set of replicas, then f(S) ™ S93

denotes the faulty replicas in S, whereas nf(S) = S \ f(S) denotes the non-faulty replicas in94

S. We write nS = |S|, fS = |f(S)|, and nfS = |nf(S)| = nS ≠ fS to denote the number of95

replicas, faulty replicas, and non-faulty replicas in S, respectively. A cluster C is a finite set96

of replicas. We consider clusters with Byzantine replicas that behave in arbitrary manners.97

In specific, if C is a cluster, then any malicious adversary can control the replicas in f(C) at98

any time, but adversaries cannot bring non-faulty replicas under their control.99

I Definition 2.1. Let C1, C2 be disjoint clusters. The cluster-sending problem is the problem100

of sending a value v from C1 to C2 such that (1) all non-faulty replicas in nf(C2) receive101

the value v; (2) all non-faulty replicas in nf(C1) confirm that the value v was received by102

all non-faulty replicas in nf(C2); and (3) non-faulty replicas in nf(C2) only receive a value v103

if all non-faulty replicas in nf(C1) agree upon sending v.104

10 Jelle Hellings, Mohammad Sadoghi

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).

27

Byzantine Cluster-Sending in Expected

Constant Communication [arXiv’21]

formalizing the problem of probabilistically sending a message from one

Byzantine cluster to another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(expected constant message complexity)
10 Jelle Hellings, Mohammad Sadoghi

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).

Anonymous author(s) XX:3

Table 1 A comparison of cluster-sending protocols that send a value from cluster C1 with nC1

replicas, of which fC1 are faulty, to cluster C2 with nC2 replicas, of which fC2 are faulty. For
each protocol P , Protocol specifies its name; Robustness specifies the conditions P puts on the
clusters; Message Steps specifies the number of messages exchange steps P performs (‡ indicates the
normal-case complexity when the coordinator in C1 is non-faulty); O. (Optimal) specifies whether P
has optimal message complexity; and U. (Unreliable) specifies whether P can deal with unreliable
communication. In this diagram, Ppcs is our Pruned Synchronous Probabilistic Cluster-Sending

protocol and Plcs is our Synchronous Probabilistic Linear Cluster-Sending protocol.

Protocol Robustness Message Steps O. U.
(expected) (worst)

PBS-cs [13] min(nC1 , nC2) > fC1 + fC2 fC1 + fC2 + 1 � �
PBS-cs [13] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 , nC2) � �

GeoBFT [12] nC1 = nC2 > 3 max(fC1 , fC2) fC2 + 1‡ �(fC1nC2) � �

T
hi

s
Pa

pe
r Ppcs nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 + 1)(fC2 + 1) � �

Ppcs nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 + 1)(fC2 + 1) � �

Plcs min(nC1 , nC2) > fC1 + fC2 4 fC1 + fC2 + 1 � �
Plcs min(nC1 , nC2) > 2(fC1 + fC2) 2 1

4 fC1 + fC2 + 1 � �
Plcs nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 , nC2) � �

3. Next, we propose pruned Pcs, a fine-tuned version of Pcs that guarantees termination.79

4. In Section 5, we propose the Synchronous Probabilistic Linear Cluster-Sending protocol80

Plcs, that uses cs-step with a specialized randomized scheme to select replicas, this to81

provide cluster-sending in expected constant steps and worst-case linear steps, which is82

optimal.83

5. Finally, in Section 6, we discuss how Pcs, Ppcs, and Plcs can operate in environments84

with asynchronous and unreliable communication.85

A summary of our findings in comparison with existing techniques can be found in Table 1.86

Furthermore, in Section 2, we introduce the necessary terminology and notation, in Section 7,87

we conclude on our findings, and, due to space considerations, Appendices A–E provide all88

proof details not included in the main paper.89

2 The Cluster-Sending Problem90

Before we present our probabilistic cluster-sending techniques, we first introduce all necessary91

terminology and notation. The formal model we use is based on the formalization of the92

cluster-sending problem provided by Hellings et al. [13]. If S is a set of replicas, then f(S) ™ S93

denotes the faulty replicas in S, whereas nf(S) = S \ f(S) denotes the non-faulty replicas in94

S. We write nS = |S|, fS = |f(S)|, and nfS = |nf(S)| = nS ≠ fS to denote the number of95

replicas, faulty replicas, and non-faulty replicas in S, respectively. A cluster C is a finite set96

of replicas. We consider clusters with Byzantine replicas that behave in arbitrary manners.97

In specific, if C is a cluster, then any malicious adversary can control the replicas in f(C) at98

any time, but adversaries cannot bring non-faulty replicas under their control.99

I Definition 2.1. Let C1, C2 be disjoint clusters. The cluster-sending problem is the problem100

of sending a value v from C1 to C2 such that (1) all non-faulty replicas in nf(C2) receive101

the value v; (2) all non-faulty replicas in nf(C1) confirm that the value v was received by102

all non-faulty replicas in nf(C2); and (3) non-faulty replicas in nf(C2) only receive a value v103

if all non-faulty replicas in nf(C1) agree upon sending v.104

28

A meta-protocol adhering to the ring order, and follow the principle of

process, forward, and re-transmit

Guarantees consensus for each cross-shard transaction in

at most two rotations around the ring

Sustaining over 1,200,000 transactions per second when deployed globally spanning ten
countries, fi

RingBFT: Resilient Consensus Over
Sharded Ring Topology [arXiv’21]

29

ByShard: Sharding in a Byzantine
Environment [VLDB’21]

Processing multi-shard transaction via the orchestrate-execute model

Processing is broken down into three types of shard-steps: vote, commit, and abort

 Each shard-step is performed via one consensus step

Steps are communicated via cluster-sending

30

Coordination-Free Byzantine Replication With

Minimal Communication Costs [ICDT’20]

formalizing the Byzantine learner problem to support effi

 analytics for blockchain applications

introducing the delayed-replication algorithm,

utilizing information dispersal techniques, 

 

22:2 Coordination-free Byzantine Replication with Minimal Communication Costs

Consequently, systems using traditional consensus have di�culty scaling up to hundreds
of participants. Techniques used in anonymous permissionless blockchains such as Bitcoin
can e�ectively support thousands of participants, however. Unfortunately, these blockchain
techniques incur massive computational costs on all participants, which has raised questions
about the sustainability of the energy consumption of these systems [?, ?]. Even with these
computational costs, the performance of Bitcoin is abysmal, as Bitcoin can only process 7
transactions per second [?].

We see the necessity of fault-tolerant and federated data management but—as outlined
above—we also believe that the current state-of-the-art techniques are too limited and lack
scalability. To combat these limitations, we believe there is a strong need for the development
of more refined scalable designs that provide fault-tolerant and federated data management.

1.1 Our Vision: Specializing for Read-only Workloads
In many practical distributed database and data processing systems, a distinction is made
between read-only workloads and update-workloads [?, ?, ?, ?, ?, ?, ?]. Typically, read-only
workloads are isolated to a single replica, whereas update-workloads are executed by all
replicas (e.g., via a commit protocol [?, ?, ?]). In most cases this improves scalability
significantly, as the majority of workloads are read-only and can be processed in parallel
by individual replicas. Unfortunately, such read-only single-replica optimizations cannot
be applied to state-of-the-art fault-tolerant and federated data management: fault-tolerant
systems need to assure validity of the result of every read-only query in the presence of
malicious replicas. These systems do so by executing every query at all replicas, after which
the issuer of the query can compare the query outcomes and determine which outcome is
valid (supported by a majority).

In many practical situations, workloads need access to the full history of all the data
managed or to large portions thereof. Examples of such workloads are analytics, data
provenance, machine learning, and data visualization. For data-hungry workloads, it makes
little sense to retrieve all data in an ine�cient way via read-only queries. Furthermore,
these workloads are typically computational complex, ruling out their integration within
a fault-tolerant system. To enable these practical workloads, we propose an alternative
hierarchical design. This hierarchical design is sketched in Figure ??.

Read-only workloads

Updates
(e.g., write transactions)

�

�

�

�

�

Malicious

�Analytics

�Data Provenance

�Machine Learning

�Visualization

Figure 1 Schematic overview of hierarchical fault-tolerant and federated data management. At

the core is a Byzantine cluster that manages and stores all data in a fault-tolerant manner. Some of

the replicas in this core can crash or be malicious. The managed data is used by many independent
read-only participants, e.g., for analytics, data provenance, machine learning, and visualization. To

do so, these participants do not need to partake in managing and storing the data, they only need

to reliably learn the data.

In our design, we propose that a Byzantine cluster of replicas (e.g., a permissioned
blockchain system) manages the data by coordinating data updates. As the cluster is Byzan-
tine fault-tolerant, it can be used to provide fault-tolerant and federated data management.

31

Coordination-Free Byzantine Replication With

Minimal Communication Costs [ICDT’20]J. Hellings and M. Sadoghi 22:7

1: event r appends a new decision to Jr do
2: if Jr ”= [] and |Jr| mod n = 0 then
3: B := Jr[|Jr| ≠ n : |Jr|].
4: s, c := slicer(B), checksum(B).
5: Broadcast (|Jr|, s, c) to all learners l œ L.

Figure 3 The information dispersal step of the delayed-replication algorithm running at every

non-faulty replica r œ G.

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12
Update decision ≠æ

No dispersal First 4 update decisions Second 4 update decisions

Learned

JR[0 : 4]

Learned

JR[4 : 8]

Figure 4 A schematic representation of the interactions between a cluster R = {r0, r1, r2, b}

and a learner l participating in the information dispersal step. The replica b is Byzantine and sends

invalid messages. The other replicas repeatedly send a valid message encoding 4 decisions from their

update journal. After receiving these messages, l is able to reconstruct (learn) the update decisions

made by R. In specific, after the n = 4-th update decision, l will start receiving messages from

which it can reconstruct the first four update decisions.

I Theorem 3.2. Consider the information dispersal step of Figure ?? running at replica

r œ G after r appends the fl-th decision, fl Ø 1, to Jr. After this step, r has sent Âfl/nÊ

messages to each learner with a total size of O(c(fl/n) + ÎJrÎ/g), in which c is the size of a

checksum.

Proof. Notice that r only broadcasts messages after every i-th decision, i Ø 1 and i mod n = 0.
Hence, after the fl-th decision, r will have broadcasted m = Âfl/nÊ messages. Consider the
messages sent by r to any learner l œ L. In these messages, the pieces slicer(Jr[(i≠1)n : in]),
1 Æ i Æ m, have a non-constant size and we assume that the remainder of each message has
size “ = �(c). Hence, in total, the m messages send to l have size ‡ at most

‡ Æ

ÿ

1ÆiÆm

(“ + Îslicer(Jr[(i ≠ 1)n : in])Î)

Æ “m +
ÿ

1ÆiÆm

9
ÎJr[(i ≠ 1)n : in]Î

g

:
Æ “m +

ÿ

1ÆiÆm

3
1 + ÎJr[(i ≠ 1)n : in]Î

g

4

Æ “m + m + ÎJr[0 : nm]Î
g Æ m(“ + 1) + ÎJrÎ

g = O(c(fl/n) + ÎJrÎ/g). J

Based on Theorem ??, it is straightforward to determine the number and size of messages
received by each learner.

I Corollary 3.3. Consider the learner l œ L after it has received all messages sent by the

information dispersal steps following the fl-th decision in JR, fl Ø 1. The learner l has

ICDT 2020

22:4 Coordination-free Byzantine Replication with Minimal Communication Costs

System Checksum Complexity for the learner

Data sent per replica Data received Decode steps
b = 0 None O(s/g) O(s(n/g)) u/n
b < g Simple O(s/g) O(s(n/g))

!g+b
g

"
(u/n)

b < g Tree O(s/g + (u/n) log(n)) O(s(n/g) + u log(n)) u/n

Figure 2 Overview of delayed-replication algorithms running on a cluster of n replicas, of which

b are Byzantine and g are non-faulty. The first two columns describe the system conditions and the

checksums used. The last three columns provide the complexity to sent a journal with u updates

and storage size s to a learner in terms of the data sent per replica, data received by the learner,

and the worst-case number of decode steps the learner needs to perform.

behave in accordance to the algorithms and are deterministic: on identical inputs, non-faulty
replicas must produce identical outputs. Notice that we do not make any assumptions on
the learners, each learner can be malicious without a�ecting the operations in R. We write
n = |R|, b = |B|, c = |C|, and g = |G| to denote the number of replicas, Byzantine replicas,
crashed replicas, and non-faulty replicas, respectively. Finally, we assume that g > b, a
minimal condition to distinguish Byzantine and non-Byzantine behavior.

I Definition 2.1. Let (R,L) be a system. The Byzantine learner problem states that each

learner in L will eventually learn of the update decisions made by R.

We will formalize the Byzantine learner problem in terms of learning journal updates.
Let (R,L) be a system. We assume that each replica r œ R maintains an append-only
update journal Jr that consists of a sequence of data updates (e.g., write transactions in
a database system). To work with sequences, we introduce the following notations. Let
S = [s0, . . . , sm≠1] be a sequence. We write S[i] to denote si, S[i : j] to denote [si, . . . , sj≠1],
and |S| to denote the length m of S. Finally, if T is also a sequence, then S is a prefix of
T , denoted S ∞ T , if |S| Æ |T | and S = T [0 : |S|]. We refer to any subsequence S[i : i + n],
i mod n = 0, as a block.

We assume that the non-Byzantine replicas all make the same update decisions in the
same order (e.g., by utilizing a consensus protocol such as Paxos or Pbft [?, ?, ?, ?]). These
updates are not necessarily registered at each replica at exactly the same time. Consequently,
we can only assume that, for each r, q œ (G fi C), either Jr ∞ Jq or Jq ∞ Jr. We write JR to
denote the unique journal Jq, q œ G, that contains the maximum-length sequence of update
decisions all non-faulty replicas agree on. Hence, JR ∞ Jr for all r œ G.

I Example 2.2. Consider a Byzantine cluster R = {r0, r1, r2, b} with

Jr0 = [u0, u1, u2, u3, u4, u5, u6, u7]; Jr1 = [u0, u1, u2, u3, u4, u5, u6];
Jr2 = [u0, u1, u2, u3, u4, u5, u6]; Jb = [u0, u1, u2, uÕ

3
, uÕ

4
].

The update journal of replica b diverges from the other replicas and, hence, b must be
Byzantine. The three non-faulty replicas share the update journal JR = [u1, u2, u3, u4, u5, u6].
Currently, the cluster is deciding on the eight update u7. This update is already fully
processed by r0, whereas replicas r1 and r2 are still processing this update.

I Definition 2.3. Let (R,L) be a system and l œ L a learner. For every i, 0 Æ i < |JR|,

the Byzantine learner problem states that l will eventually learn of the i-th update decision

JR[i]. At the same time, no Byzantine replica b œ B can convince l that any other update

was the i-th update decision made.

formalizing the Byzantine learner problem to support effi

 analytics for blockchain applications

introducing the delayed-replication algorithm,

utilizing information dispersal techniques, 

 

32

Permissioned Blockchain Through the Looking Glass:

Architectural and Implementation Lessons Learned [ICDCS’20]

Single-threaded Monolithic Design

Out-of-ordering Consensus Communication

De-coupled Ordering and Execution

Off-Chain Memory Management

Expensive Cryptographic Practices (DS vs. MAC)

Smart Contracts Code Generation (Pre-compilation)

33

Permissioned Blockchain Through the Looking Glass:

Architectural and Implementation Lessons Learned [ICDCS’20]

Single-threaded Monolithic Design

Out-of-ordering Consensus Communication

De-coupled Ordering and Execution

Off-Chain Memory Management

Expensive Cryptographic Practices (DS vs. MAC)

Smart Contracts Code Generation (Pre-compilation)

Multi-Threaded Deep Pipeline

34

Permissioned Blockchain Through the Looking Glass:

Architectural and Implementation Lessons Learned [ICDCS’20]

Can a well-crafted system based on a

classical BFT protocol outperform a modern protocol?

Fig. 1: Two permissioned applications employing distinct BFT
consensus protocols (80K clients used for each experiment).

distributed applications [20], [21], [22], [23]. We use these
principles to illustrate the design of a high-throughput yielding
permissioned blockchain fabric, ResilientDB. In specific, we
dissect existing permissioned blockchain systems, identify
different performance bottlenecks, and illustrate mechanisms
to eliminate these bottlenecks from the design. For example,
we show that even for a blockchain system, ordering of trans-
actions can be easily relaxed without affecting the security.
Further, most of the tasks associated with transaction ordering
can be extensively parallelized and pipelined. A highlight of
our other observations:

• Optimal batching of transactions can help a system gain
up to 66⇥ throughput.

• Clever use of cryptographic signature schemes can in-
crease throughput by 103⇥.

• Employing in-memory storage with blockchains can yield
up to 18⇥ throughput gains.

• Decoupling execution from the ordering of client trans-
actions can increase throughput by 10%.

• Out-of-order processing of client transactions can help
gain 60% more throughput.

• Protocols optimized for fault-free cases can result in a
loss of 39⇥ throughput under failures.

These observations allow us to perceive ResilientDB as a
reliable test-bed to implement and evaluate enterprise-grade
blockchain applications. 1 We now enlist our contributions:

• We dissect a permissioned blockchain system and enlist
different factors that affect its performance.

• We carefully measure the impact of these factors and
present ways to mitigate the effects of these factors.

• We design a permissioned blockchain system, Re-
silientDB that yields high throughput, incurs low latency,
and scales even a slow protocol like PBFT. ResilientDB
includes an extensively parallelized and deeply pipelined
architecture that efficiently balances the load at a replica.

• We raise eleven questions and rigorously evaluate our
ResilientDB platform in light of these questions.

Note on this work: This paper is not aimed at designing
efficient BFT consensus protocols, for which there already
exists an extensive literature [3], [4], [24], [25], [26]. Further,

1 ResilientDB is available and open-sourced at https://resilientdb.com.

Primary

Malicious

Crashed

Fig. 2: This diagram illustrates a set of replicas of which some
may be malicious or have crashed. One replica is designated as
the primary, which leads the consensus on the received client
request among the backup replicas.

Replica
Replica
Replica

Primary

Client
m

PRE-PREPARE PREPARE COMMIT

Fig. 3: The three-phase PBFT protocol.

this work does not aim at benchmarking open-membership and
permissioned blockchain systems, as done by Blockbench [2].
Moreover, we do not advocate the use of any specific BFT
protocol or permissioned blockchain system, but instead per-
form an in-depth analysis of a single permissioned blockchain
system, to uncover insights that can help both researchers and
practitioners to build next-generation blockchain fabrics.

II. BACKGROUND AND RELATED WORK

Before laying down the foundation for efficient design, we
first analyze existing literature and practices in the domain of
permissioned blockchain.

A. BFT Consensus
At the core of any blockchain application is a BFT consen-

sus protocol, which states that given a client request and a set
of replicas, some of which could be byzantine, the non-faulty
replicas would agree on the order for this client request. We
use Figure 2 to schematically represent consensus.

PBFT [3] is often described as the first BFT protocol
to allow consensus to be incorporated by practical systems.
PBFT follows the primary-backup model where one replica is
designated as the primary and other replicas act as the backup.
PBFT only guarantees a successful consensus among n repli-
cas if at most f of them are byzantine, where n � 3f + 1.

When the primary replica receives a client request, it assigns
it a sequence number and sends a PRE-PREPARE message
to all the backups to execute this request in the sequence
order (refer to Figure 3). Each backup replica on receiving the
PRE-PREPARE message from the primary shows its agreement
to this order by broadcasting a PREPARE message. When a
replica receives PREPARE message from at least 2f distinct
backup replicas, then it achieves a guarantee that a majority

Single-threaded Monolithic Design

Out-of-ordering Consensus Communication

De-coupled Ordering and Execution

Off-Chain Memory Management

Expensive Cryptographic Practices (DS vs. MAC)

Smart Contracts Code Generation (Pre-compilation)

Revisit Resiliency

(Graduate Student Experiment Continues)

35

Mount Tallac, Lake Tahoe

12.1 Miles Long

3,931 Feet Elevation Gain

(9,738 Feet at Summit)

37

Fostering Resiliency

(Offering Stress Management and Well-Being Courses at UC Davis)

Seminar spotlight: “Becoming an Extraordinary Human”

 The California Aggie, April 6, 2020

http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
http://tamarkoz.org/
https://theaggie.org/2020/04/06/seminar-spotlight-becoming-an-extraordinary-human/

THANK YOU

FOR COMPLETE REFERENCES

https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://expolab.org
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://dblp.uni-trier.de/pers/hd/s/Sadoghi:Mohammad
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://scholar.google.ca/citations?user=Lx9fbJoAAAAJ
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://www.researchgate.net/profile/Mohammad_Sadoghi
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/
https://resilientdb.com/

