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Proof-of-Execution: Reaching Consensus 
Through Fault-Tolerant Speculation [arXiv’19]

PoE scales beyond 32 replicas, in presence  
of failures, outperforms PBFT up to 40%

Fault-tolerant Proof-of-Execution Protocol

Out-of-Order message processing to reduce replica idleness 
Speculative Execution with revertible/divergent replicas &  
                                           eager/irrevertible client commit
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Proof-of-Execution: Reaching Consensus 
Through Fault-Tolerant Speculation [arXiv’19]

Linearized Proof-of-Execution Protocol

Out-of-Order message processing to reduce replica idleness 
Speculative Execution with revertible/divergent replicas &  
                                           eager/irrevertible client commit 

                                    introducing linear message complexity

B
R2

R1
P

c T

propose support certify inform

Fig. 2: Normal-case algorithm of POE employing threshold-
signatures: Client c sends its request containing transaction T to the
primary P. Although replica B is Byzantine, it fails to affect POE.

Symmetric signature schemes like MAC expect existence of
a secret key between every pair of communicating nodes. We
expect non-faulty replicas to keep their secret keys hidden.
TS are a form of asymmetric cryptographic signature

scheme. For POE, we use TS where at least nf replicas
collaborate to produce a valid signature but no less than nf
replicas can produce a valid signature. This requires each
signer to hold a distinct private key, which it uses to create
its share. In specific, we denote i-th signer’s share generated
using its private key as shvii where v is a value. Any replica
that receives a set T , T = {shvij |j 2 T, |T | = nf} including
at least nf shares can aggregate them into a single signature
hT i using a public function. This digital signature can then be
verified using the public key.

Next, we define the consensus provided by POE.

Definition 1. Let (R,C) be a system. A single run of any
consensus protocol should satisfy the following requirements:
Termination. Each non-faulty replica in the set NF executes

transactions.
Non-divergence. All non-faulty replicas execute the same

transaction.
Termination is typically referred to as liveness, whereas non-
divergence is typically referred to as safety. In POE, execution
is speculative: replicas can execute and revert transactions.
To provide safety, POE provides speculative non-divergence
instead of non-divergence:
Speculative non-divergence. If f + 1 non-faulty replicas (a

majority) accept and execute the same transaction T , then
all the non-faulty replicas will revert any other accepted
and executed transactions, and will eventually accept and
execute T .

To provide safety, we do not need any other assumptions
on communication or on the behavior of clients. Due to well-
known impossibility results for asynchronous consensus [31],
we can only provide liveness in periods of reliable bounded-
delay communication during which all messages sent by non-
faulty replicas will arrive at their destination within some
maximum delay.

B. Normal-case algorithm of POE
Our design of POE protocol is agnostic to the underlying

cryptographic signature scheme. For the sake of brevity, in
this section, we describe POE’s linear protocol based on TS.
In Appendix ??, we show how with minimal changes POE
can switch to using MAC.

The POE protocol operates in views v = 0, 1, . . . . In view v,
the replica R with id(R) = v mod n is elected as the primary.
The communication of the normal-case algorithm of POE is
sketched in Figure 2 and the full pseudo-code of the algorithm
can be found in Figure 3.

Consider a view v with primary P and a client c that wants
execution of a transaction T . In POE, the client c initiates
execution by sending hT ic to P. To assure that malicious
primaries cannot forge transactions, the client signs T with
its private key. To initiate replication and execution of T as
the k-th transaction, the primary proposes T to all replicas by
broadcasting the message PROPOSE.

After a replica R receives a PROPOSE message from P, it
checks whether at least 2f +1 other replicas also received the
same proposal from P. This check assures R that at least f +1
non-faulty replicas received the same proposal, which helps
to achieve speculative non-divergence. To perform this check,
each replica agrees to support the first proposal PROPOSE it
receives from the primary by computing a threshold share and
sending a SUPPORT message to the primary.

The primary P waits for nf SUPPORT messages that include
valid threshold shares, which can be combined to generate a
verifiable digital signature. On generating such a signature, the
primary broadcasts CERTIFY message.

Each replica R, on receiving a CERTIFY message, verifies
the digital signature. If the signature is valid, R view-commits
to T as the k-th transaction in view v. The replica R logs
this view-commit decision as VCommitR(hT ic, k, v). After R
view-commits to T , R schedules T for speculative execution
as the k-th transaction of view v. Consequently, T will be
executed by R after all preceding transactions are executed.
We write ExecuteR(hT ic, k, v) to log this execution.

After execution, R informs the client of the order of exe-
cution and of any execution result r via a message INFORM.
A client considers its transaction successfully executed after it
receives identical INFORM messages from nf distinct replicas.
This guarantees that at least nf�f � f+1 non-faulty replicas
executed this transaction as the k-th transaction (speculative
non-divergence guarantee). If the client does not know the
current primary or does not get any timely response for its
requests, then it can broadcast its request to all replicas. The
non-faulty replicas will then forward this request to the current
primary (if it is not yet executed) and ensure that the primary
initiates successful proposal of this request in a timely manner.

To prove correctness of POE in all cases, we will need the
following technical safety-related property of view-commits.

Proposition 1. Let Ri, i 2 {1, 2}, be two non-faulty replicas
that view-committed to hTiici as the k-th transaction of view
v (VCommitR(hT ic, k, v)). We have hT1ic1 = hT2ic2 .

Proof. Replica Ri only view-committed to hTiici after Ri

received certify message CERTIFY(hhi, v, k) from the primary
P (Line 14 of Figure 3). This message includes a threshold
signature hhi which requires threshold shares from a set Si of
nf distinct replicas. Let Xi = Si\F be the non-faulty replicas
in Si. We have |Si| = nf and |F|  f . Hence, |Xi| � nf � f .
The non-faulty replicas in Ti will only send a single support
message for the k-th transaction in view v (Line 10 of
Figure 3). If hT1ic1 6= hT2ic2 , then X1 and X2 must not
overlap. Hence, |X1 [ X2| � 2(nf � f). As n = nf + f ,
this simplifies to 3f � n, which contradicts our assumption
that n > 3f . Hence, we conclude hT1ic1 = hT2ic2 .

We will later show how Proposition 1 guarantees that
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MultiBFT: Scaling Blockchain Databases Through 
Parallel Resilient Consensus Paradigm  [arXiv’19]

A wait-free meta-protocol… 
Designate multiple replicas as Primaries! 

Run multiple parallel consensuses on each replica independently

Fault-tolerant MultiBFT Protocol

Brief Announcement: Revisiting Consensus Protocols through Wait-free Parallelization. DISC 2019
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Parallel Consensus Unification Execution

Figure 3: The normal-case of our MultiBFT protocol running at replica R. In a single round of MultiBFT, each of the z instances

run Pbft consensus in parallel and yields a consensus decision. This set of client requests are executed in a deterministic order.

2.3.1 Unification – Global Ordering

Once all the z instances have completed consensus on their
requests, there is a need to determine a global order for
executing these requests. We call this stage as unification.
In round r, when the x-th instance Ix has replicated its
client request, it notifies its replica. Once the replica receives
notifications from all z instances (and has already executed
requests for round r � 1), then it executes the requests of
round r.

One can simply execute the requests in the instance or-
der. E.g., if x < y, then requests of the y-th instance are
executed after requests of the x-th instance. Although this
simple ordering scheme guarantees a unique sequential order
for executing all the client requests across all the non-faulty
replicas, this scheme also gives earlier instances dispropor-
tional control over execution. We illustrate this next:

Example 1. Consider a financial service in which client
requests are of the form

transfer(A,B, n,m) := if amount(A) > n

then withdraw(A,m); deposit(B,m).

Assume two client requests: m1 = transfer(Alice,Bob, 500,
200) and m2 = transfer(Bob,Eve, 400, 300). Execution of
m1 influences the outcome of execution of m2:
If 200  amount(Bob) < 400, then execution of m1 before

m2 will result in a transfer of 300 to Eve. If m1 is exe-
cuted after m2, then Eve will not receive anything. Hence by
choosing a predictable order of execution, earlier instances
in the ordering can cleverly influence the execution of any
requests accepted by later instances.

To resolve the above shortcoming, we propose determin-
istic selection of a di↵erent permutation of the order of ex-
ecution in every round.
Let S = [s0, . . . , sk�1] be a sequence. We write S[i] to

denote si and |S| to denote the length k of S. If v is a value,
then S � v = [s0, . . . , sk�1, v] denotes the concatenation of
S and v. If v is a value, then S \ v denotes the sequence
obtained from S by removing all occurrences of v. If k and
v are values, then we write k ! v to denote a key-value
mapping that maps k onto v.
As k = |S|, so there can exist k! distinct permutations

of S. We can enumerate these permutations as P (S) =
{p0, . . . , pk!�1} and, by construction, there also exists a bi-
jection fS : {0, . . . , k!� 1} ! P (S). We define this function
fS recursively, as follows:

fS(i) =

(
S if |S| = 1;

fS\S[q](r)� S[q] if |S| > 1,

Ordering and execution role (R 2 R) :

1: event Successful replication of client requests Ti, 0  i < z,
for each instance Ii in round r do

2: Let S := [Ti | (Ti = hmiiCi ) ^ (0  i < z)], ordered on i.
3: for Ti 2 fS( digest(S) mod |S|! ) do

4: Execute mi, yielding (optional) result value v.
5: Send hResponse,m, r, vi to Ci.

Figure 4: The unification and execution phases of Multi-
BFT running at each non-faulty replica.

in which q = i÷ (|S|� 1)! and r = i mod (|S|� 1)! are the
quotient and remainder of division by (|S| � 1)!. Observe
that this function partitions any value j, 0  j  |S|! � 1
into q and r with 0  q  |S|� 1 and 0  r  (|S|� 1)!� 1.
Now, given this bijection fS , how can all the non-faulty

replicas reach a single unique ordering, which cannot be pre-
dicted by malicious replicas. In Figure 4, we present the
algorithm run at each replica. In each round r, when all the
z instances at a replica have successfully replicated their re-
spective client requests, then each replica creates a sequence
S of these requests (Line 2). Next, each replica hashes (di-
gest) this sequence and calls the function fS (Line 3). This
call to fS gives all the instance an equal opportunity to
propose a client request that will be executed first. This
sequence cannot be predicted by malicious replicas till there
is at least one non-faulty primary, that is, z � f + 1. Ex-
ample 2 illustrates the process of arriving a distinct permu-
tation based on Figure 4.

Example 2. Consider a system with 4 instances that decide
on client requests S = [m0,m1,m2,m3] in some round. We
have k = |S| = 4 and k! = 24. Assume digest(S) mod k! =
17. Next, all replicas want to determine the execution order.
To do so, each replica computes fS(17). We have q = 17÷
(k � 1)! = 2 and r = 17 mod (k � 1)! = 5. Hence, fS(17) =
fS\S[2](5)� S[2] = f[m0,m1,m3](5)�m2. On continuing this
process, the output permutation will be [m0,m1,m3,m2].

2.4 Uncivil Executions in MultiBFT

We now look at di↵erent uncivil executions faced by a
parallel protocol such as MultiBFT. For traditional BFT
protocols such as Pbft or Zyzzyva, the main challenge is
to handle the maliciousness of the primary. These protocols
make a key insight that if the primary is non-faulty, then the
byzantine replicas cannot a↵ect the system. However, if the
communication is unreliable, then none of these protocols
can make any progress [11, 45, 64, 33, 46].
This leads us to define safety and liveness properties for

MultiBFT.

4

redundant instances apart from themaster instance. The re-
dundant instances only monitor the throughput of the mas-
ter instance by repeating consensus on the same requests as
the master. Prime [43], Spinning [61], and HotStuff [64]
do not run parallel consensuses and only replace their pri-
maries after every consensus. Omada [25] and MirBft [58]
are the only other protocols that take a step at parallelizing
the BFT consensus. Both of these protocols face some key
challenges, which we illustrate next.

To extract maximum benefits from parallelization, we set
forth the following requirements from a parallel protocol.
(R1) Secure Ordering. In a parallel protocol, each replica

is running multiple instances, each of which is partic-
ipating in a distinct consensus. To ensure all replicas
have the same state, each replica needs to execute the
requests of all these instances in a unique global-order,
which cannot be discovered a priori or be compromised
by malicious replicas.

(R2) Independent Failures. In any parallel BFT protocol,
failure of one primary (instance) should not cause all
instances to stop.

(R3) Continuous-ordering. A parallel BFT protocol should
ensure that its instances with non-faulty primaries con-
tinue ordering requests without any disturbance from
malicious replicas. Moreover, the requirement to gen-
erate a global-order and to execute the requests should
not halt the operations of any instance.

(R4) Coordinated Attack. Parallel protocols face an un-
precedented challenge—collusion of multiple malicious
primaries. If not accounted for such attacks, these
malicious primaries can work together and ensure no
non-faulty replicas executes any request.

Like MultiBFT, MirBft and Omada also run multi-
ple parallel consensuses. Although these protocols ensure a
common order for requests, this order can be compromised
by malicious replicas. Hence, they partially meet Require-
ment R1. Further, if even one instance fails, these proto-
cols shut down all instances, recover the state, and restart
the instances. Hence, these protocols do not meet Require-
ment R2. Moreover, these protocols present no discussion
on collusion attacks as shown in Requirement R4.

In this paper, we show that our MultiBFT protocol sat-
isfies all these requirements expected of a parallel protocol.
MultiBFT matches the vision of traditional distributed
databases where each replica is capable of handling its own
set of client requests. Until now, blockchain databases have
relied on single-primary BFT protocols. Hence, a stable
and secure BFT protocol that allows each replica to act as
a primary and ensures a safe state is in order.

In specific, we make the following key contributions:
1. We present our primary-agnosticMultiBFT paradigm

that yields an e�cient parallelization of the Pbft pro-
tocol and ensures secure and continuous-ordering of
client requests (Requirements R1 and R3).

2. We show that failure of one MultiBFT instance does
not a↵ect processing of other instances and thatMulti-
BFT facilitates independent recovery of failed instances.

3. We show that our MultiBFT protocol detects and
defends against collusion attacks by multiple malicious
primaries (Requirements R2 and R4).

4. We implement MultiBFT on ResilientDB, our per-
missioned blockchain fabric [33, 34], and evaluate its
performance by comparing it with four state-of-the-
art BFT protocols: Pbft [11] (implementation based

Parallel Consensus Unification Execution

Run z parallel PBFT 
instances.

Create a secure 
global order of all 

the requests.

Execute the requests 
and reply to clients.

Figure 1: Three stages of the MultiBFT protocol.

on BFTSmart [10]), Zyzzyva [45], HotStuff [64],
and MirBft [58]. We show that MultiBFT outper-
forms these state-of-the art BFT protocols and attains
a throughput of up to 290 ktxn/s.

5. Our experiments also show that MultiBFT is resilient
against instance failures and primary attacks. The ef-
fectiveness and scalability of our MultiBFT protocol
is demonstrated by the fact that MultiBFT achieves
a throughput of 210 ktxn/s on 46 replicas.

2. MULTI BFT

Our MultiBFT protocol parallelizes the seminal Pbft
consensus protocol. Using parallelization, MultiBFT en-
sures that the non-faulty replicas are always accepting and
ordering client requests, this independent of any malicious
behavior or attack. Figure 1 illustrates a succinct repre-
sentation of our MultiBFT paradigm. For the sake of ex-
planation, we assume MultiBFT works in rounds. Each
round of MultiBFT includes three stages: parallel consen-
sus, unification, and execution. The notion of a round helps
in generating a common order and recovering from instance
failures. Later, we discuss how the concept of rounds does
not a↵ect individual primaries from working independently.
Prior to any round, MultiBFT requires each replica to

prepare to run z instances of Pbft protocol in parallel. A
round r begins when the primary of each instance proposes
a client request. Firstly, in the parallel consensus stage, each
instance runs Pbft on its client request. Secondly, in the
unification stage, the replica waits for all its z instances to
complete replication (reach consensus on their respective re-
quests). If every instance successfully replicates a request,
then a common order for execution of these requests is de-
termined. If one or more instances are unable to replicate re-
quests, then the primaries for those instances must be faulty
and recovery is initiated. Finally, in the execution stage,
each replica executes all the client requests in the common
order. Notice that in Figure 1, we have a loop. This loop
states that while unification and execution is going on for
requests of round r, the instances are already replicating
requests for round r + 1. In specific, instances are always
replicating client requests for the future rounds.

2.1 Preliminaries

Prior to explaining our MultiBFT protocol in detail, we
introduce some notations and assumptions. We represent a
replicated systems by a triple S = (C ,R,M) in which C is
the set of clients using the service, R is the set of replicas and
M ⇢ R is the set of malicious replicas that exhibit byzan-
tine behavior. We write n = |R| and f = |M| to denote
the number of replicas and malicious replicas, respectively.
We assume n > 3f . The set of non-faulty replicas, denoted
by nf, is defined as nf = R \ M. We assume non-faulty
replicas behave in accordance to the protocol and are de-
terministic: on identical inputs, all non-faulty replicas must
produce identical outputs.
With each replica R 2 R, we associate a set of z instances,

denoted is(R). Note that z can take any value, 1  z  n

2



�21

MultiBFT: Scaling Blockchain Databases 
Through Parallel Resilient Consensus Paradigm

Brief Announcement: Revisiting Consensus Protocols through Wait-free Parallelization. DISC 2019

Throughput up to 300,000 txns/s 
(with failures)

Throughput up to 350,000 txns/s 
(without failures)
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GeoBFT: Global Scale Resilient 
Blockchain Fabric [VLDB’20]

A meta-protocol, locally running any BFT in parallel and independently 
Global ordering provably requires only linear communication 

Provably sufficient for primary to send a certificate to at most f+1 replicas, 
                                            malicious primary is detectable and replaceable

Fault-tolerant GeoBFT Protocol
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Figure 2: Representation of the normal-case algo-

rithm of GeoBFT running on two clusters. Clients

ci, i 2 {1, 2}, request transactions Ti from their local

cluster Ci. The primary PCi 2 Ci replicates this trans-

action to all local replicas using Pbft. At the end of

local replication, the primary can produce a cluster

certificate for Ti. These are shared with other clus-

ters via inter-cluster communication, after which all

replicas in all clusters can execute Ti and Ci can in-

form ci.

1. At the start of each round, each cluster chooses a sin-
gle transaction of a local client. Next, each cluster
locally replicates its chosen transaction in a Byzantine
fault-tolerant manner using Pbft. At the end of suc-
cessful local replication, Pbft guarantees that each
non-faulty replica can prove successful local replication
via a commit certificate.

2. Next, each cluster shares the locally-replicated trans-
action along with its commit certificate with all other
clusters. To minimize inter-cluster communication, we
use a novel optimistic global sharing protocol. Our op-
timistic global sharing protocol has a global phase in
which clusters exchange locally-replicated transactions,
followed by a local phase in which clusters distribute
any received transactions locally among all local repli-
cas. To deal with failures, the global sharing protocol
utilizes a novel remote view-change protocol.

3. Finally, after receiving all transactions that are locally-
replicated in other clusters, each replica in each cluster
can deterministically order all these transactions and
proceed with their execution. After execution, the
replicas in each cluster inform only local clients of the
outcome of the execution of their transactions (e.g.,
confirm execution or return any execution results).

In Figure 2, we sketch a single round of GeoBFT in a
setting of two clusters with four replicas each.

2.1 Preliminaries

To presentGeoBFT in detail, we first introduce the system
model we use and the relevant notations.
Let R be a set of replicas. We model a topological-aware

system as a partitioning of R into a set of clusters S =
{C1, . . . , Cz}, in which each cluster Ci, 1  i  z, is a set
of |Ci| = n replicas of which at most f are faulty and can
behave in Byzantine, possibly coordinated and malicious,
manners. We assume that in each cluster n > 3f .

Remark 2.1. We assumed z clusters with n > 3f replicas
each. Hence, n = 3f + j for some j � 1. We use the
same failure model as Steward [5], but our failure model
di↵ers from the more-general failure model utilized by Pbft,
Zyzzyva, and HotStuff [9, 18, 19, 62, 63, 94]. These
protocols can each tolerate the failure of up-to-bzn/3c =
b(3fz+ zj)/3c = fz+ bzj/3c replicas, even if more than f of
these failures happen in a single region; whereas GeoBFT

and Steward can only tolerate fz failures, of which at most
f can happen in a single cluster. E.g., if n = 13, f = 4, and
z = 7, then GeoBFT and Steward can tolerate fz = 28
replica failures in total, whereas the other protocols can
tolerate 30 replica failures. The failure model we use enables
the e�cient geo-scale aware design of GeoBFT, this without
facing well-known communication bounds [32, 35, 36, 37, 41].

We write f(Ci) to denote the Byzantine replicas in cluster
Ci and nf(Ci) = Ci \ f(Ci) to denote the non-faulty replicas
in Ci. Each replica R 2 Ci has a unique identifier id(R),
1  id(R)  n. We assume that non-faulty replicas behave in
accordance to the protocol and are deterministic: on identical
inputs, all non-faulty replicas must produce identical outputs.
We do not make any assumptions on clients: all client can
be malicious without a↵ecting GeoBFT.
Some messages in GeoBFT are forwarded (for example,

the client request and commit certificates during inter-cluster
sharing). To ensure that malicious replicas do not tamper
with messages while forwarding them, we sign these mes-
sages using digital signatures [58, 72]. We write hmiu to
denote a message signed by u. We assume that it is practi-
cally impossible to forge digital signatures. We also assume
authenticated communication: Byzantine replicas can imper-
sonate each other, but no replica can impersonate another
non-faulty replica. Hence, on receipt of a message m from
replica R 2 Ci, one can determine that R did send m if
R /2 f(Ci); and one can only determine that m was sent by a
non-faulty replica if R 2 nf(Ci). In the permissioned setting,
authenticated communication is a minimal requirement to
deal with Byzantine behavior, as otherwise Byzantine repli-
cas can impersonate all non-faulty replicas (which would
lead to so-called Sybil attacks) [39]. For messages that are
forwarded, authenticated communication is already provided
via digital signatures. For all other messages, we use less-
costly message authentication codes [58, 72]. Replicas will
discard any messages that are not well-formed, have invalid
message authentication codes (if applicable), or have invalid
signatures (if applicable).
Next, we define the consensus provided by GeoBFT.

Definition 2.2. Let S be a system over R. A single run
of any consensus protocol should satisfy the following two
requirements:
Termination Each non-faulty replica in R executes a trans-

action.
Non-divergence All non-faulty replicas execute the same

transaction.
Termination is typically referred to as liveness, whereas

non-divergence is typically referred to as safety. A single
round of our GeoBFT consists of z consecutive runs of
the Pbft consensus protocol. Hence, in a single round of
GeoBFT, all non-faulty replicas execute the same sequence
of z transactions.

To provide safety, we do not need any other assumptions
on communication or on the behavior of clients. Due to well-

870
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Figure 1 On the left, a traditional fully-replicated resilient system in which all four replicas each
hold all the data. On the right, a sharded design in which each resilient cluster of four replicas holds
only a part of the data.

We notice that well-known Byzantine primitives—such as consensus, interactive con-46

sistency, and Byzantine broadcasts [5, 8, 6, 7, 19]—are insu�cient to provide e�cient47

coordination between Byzantine clusters, as they either require large amounts of costly48

communication between all involved replicas (consensus and interactive consistency), or do49

not provide strong guarantees when supervised by Byzantine replicas (Byzantine broadcasts).50

Fortunately, several recent works studied cluster-sending and, more general, communication51

between Byzantine clusters. First, Hellings et al. [13] formalized the cluster-sending problem52

and provided worst-case optimal cluster-sending protocols. Unfortunately, these protocols are53

pessimistic in the sense that they operate under worst-case assumptions and do not optimize54

for other cases. Furthermore, these protocols require reliable communication for their opera-55

tions. Second, geo-scale aware consensus protocols such as Steward [1] and GeoBFT [12]56

incorporate geo-aware clustering in the system design of fully-replicated systems, this to57

reduce geo-scale communication in favor of local communication. Additionally, GeoBFT uses58

a specialized optimistic inter-cluster communication protocol. Unfortunately, this protocol59

requires a reliable coordinator to operate e�ciently, and has a costly remote view-change path60

to recover from coordinator failure. Third, the recently-proposed delayed-replication algorithm61

provides e�cient communication from Byzantine clusters to other participants [14]. Unfortu-62

nately, this algorithm presumes receivers are reliable and aims at minimizing communication63

per cluster replica, and not overall communication. Finally, we see several developments64

towards inter-chain communication in blockchain communities, e.g., sidechains, blockchain65

relays, and atomic swaps [11, 15, 17, 25]. Unfortunately, these techniques are deeply inter-66

twined with the design goals of blockchains in mind (e.g., cryptocurrency-oriented), and are67

not readily applicable to traditional consensus-based Byzantine clusters.68

Although cluster-sending and related techniques have received some attention, we must69

conclude that the current state-of-the-art does not yet provide a satisfactory approach70

for inter-cluster coordination. In this paper, we improve on ths situation by introducing71

probabilistic cluster-sending techniques. In specific, our main contributions are as follows:72

1. First, in Section 3, we introduce the cluster-sending step cs-step that attempts to send73

a value from a replica in the sending cluster to a replica in the receiving cluster in a74

verifiable manner and with a constant amount of inter-cluster communication.75

2. Then, in Section 4, we introduce the Synchronous Probabilistic Cluster-Sending protocol76

Pcs that uses cs-step with randomly selected replicas from the sending and receiving77

clusters to provide cluster-sending in expected constant steps.78
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Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T ) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T ) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).
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Table 1 A comparison of cluster-sending protocols that send a value from cluster C1 with nC1

replicas, of which fC1 are faulty, to cluster C2 with nC2 replicas, of which fC2 are faulty. For
each protocol P , Protocol specifies its name; Robustness specifies the conditions P puts on the
clusters; Message Steps specifies the number of messages exchange steps P performs (‡ indicates the
normal-case complexity when the coordinator in C1 is non-faulty); O. (Optimal) specifies whether P
has optimal message complexity; and U. (Unreliable) specifies whether P can deal with unreliable
communication. In this diagram, Ppcs is our Pruned Synchronous Probabilistic Cluster-Sending

protocol and Plcs is our Synchronous Probabilistic Linear Cluster-Sending protocol.

Protocol Robustness Message Steps O. U.
(expected) (worst)

PBS-cs [13] min(nC1 , nC2) > fC1 + fC2 fC1 + fC2 + 1 � �
PBS-cs [13] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 , nC2) � �

GeoBFT [12] nC1 = nC2 > 3 max(fC1 , fC2) fC2 + 1‡ �(fC1nC2) � �

T
hi

s
Pa

pe
r Ppcs nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 + 1)(fC2 + 1) � �

Ppcs nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 + 1)(fC2 + 1) � �

Plcs min(nC1 , nC2) > fC1 + fC2 4 fC1 + fC2 + 1 � �
Plcs min(nC1 , nC2) > 2(fC1 + fC2) 2 1

4 fC1 + fC2 + 1 � �
Plcs nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 , nC2) � �

3. Next, we propose pruned Pcs, a fine-tuned version of Pcs that guarantees termination.79

4. In Section 5, we propose the Synchronous Probabilistic Linear Cluster-Sending protocol80

Plcs, that uses cs-step with a specialized randomized scheme to select replicas, this to81

provide cluster-sending in expected constant steps and worst-case linear steps, which is82

optimal.83

5. Finally, in Section 6, we discuss how Pcs, Ppcs, and Plcs can operate in environments84

with asynchronous and unreliable communication.85

A summary of our findings in comparison with existing techniques can be found in Table 1.86

Furthermore, in Section 2, we introduce the necessary terminology and notation, in Section 7,87

we conclude on our findings, and, due to space considerations, Appendices A–E provide all88

proof details not included in the main paper.89

2 The Cluster-Sending Problem90

Before we present our probabilistic cluster-sending techniques, we first introduce all necessary91

terminology and notation. The formal model we use is based on the formalization of the92

cluster-sending problem provided by Hellings et al. [13]. If S is a set of replicas, then f(S) ™ S93

denotes the faulty replicas in S, whereas nf(S) = S \ f(S) denotes the non-faulty replicas in94

S. We write nS = |S|, fS = |f(S)|, and nfS = |nf(S)| = nS ≠ fS to denote the number of95

replicas, faulty replicas, and non-faulty replicas in S, respectively. A cluster C is a finite set96

of replicas. We consider clusters with Byzantine replicas that behave in arbitrary manners.97

In specific, if C is a cluster, then any malicious adversary can control the replicas in f(C) at98

any time, but adversaries cannot bring non-faulty replicas under their control.99

I Definition 2.1. Let C1, C2 be disjoint clusters. The cluster-sending problem is the problem100

of sending a value v from C1 to C2 such that (1) all non-faulty replicas in nf(C2) receive101

the value v; (2) all non-faulty replicas in nf(C1) confirm that the value v was received by102

all non-faulty replicas in nf(C2); and (3) non-faulty replicas in nf(C2) only receive a value v103

if all non-faulty replicas in nf(C1) agree upon sending v.104
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C1:

C2:
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Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T ) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T ) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).
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Fig. 5.2 Bijective sending from C1 to C2. The faulty replicas
are highlighted using a red background. The edges connect
replicas r 2 C1 with b(r) 2 C2. Each solid edge indicates a
message sent and received by non-faulty replicas. Each dashed
edge indicates a message sent or received by a faulty replica.

We have fC1 + fC2 + 1 = 6 and we choose

S1 = {r1,2, . . . ,r1,7};

S2 = {r2,1, . . . ,r2,6};

b = {r1,i 7! r2,i�1 | 2  i  7}.

In Figure ??, we sketched this situation. Replica r1,2

sends a valid message to r2,1. As r2,1 is faulty, it might
ignore this message. Replicas r1,3 and r1,4 are faulty
and might not send a valid message. Additionally, r2,3

is faulty and might ignore any message it receives. The
messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to
non-faulty replicas. Hence, these messages all arrive
correctly.

Having illustrated the concept of bijective sending,
as employed by BS-cs, we are now ready to prove cor-
rectness of BS-cs:

Proposition 5.2 Let S be a system with Byzantine

failures and cluster signing and let C1, C2 2 S. If nC1 >
2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then BS-cs

satisfies Definition ??. The protocol sends fC1 + fC2 + 1
messages, of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-cs (Figure ??). We have nS1 = nS2 = fC1 + fC2 + 1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC2 + 1. Hence, we have nfT � 1. Due to
Line ??, each replica in nf(T ) will receive the message
(v, hviC1) from a distinct replica in nf(S1) and broadcast
(v, hviC1) to all replicas in C2. As nfT � 1, each replica
r0
2 2 nf(C2) will receive (v, hviC1) from a replica in C2.

Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

As noted before, replica signing can emulate cluster
signing. Hence, BS-cs can also be used for systems with
only replica signing. Such an emulated solution does
require large messages whose size depends on the size of
the sending cluster, however. Alternatively, we combine
the principle idea of bijective sending with the lower

Protocol for the sending cluster C1:

1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ✓ C1 with nS1

= 2fC1
+ fC2

+ 1.
3: Choose replicas S2 ✓ C2 with nS2

= 2fC1
+ fC2

+ 1.
4: Choose a bijection b : S1 ! S2.
5: for r1 2 S1 do
6: r1 sends (v, hvir1) to b(r1).

Protocol for the receiving cluster C2:

7: See the protocol for the receiving cluster in RB-rs.

Fig. 5.3 BS-rs, the bijective sending cluster-sending protocol
that sends a value v from C1 to C2. We assume Byzantine
failures and a system that provides replica signing.

bound on the number of replica certificate exchanged,
as provided by Theorem ??. Let Ci, i 2 {1, 2}, be the
cluster with the most replicas. To assure that at least
fC1 + 1 non-faulty replicas in C1 send replica certificates
to non-faulty replicas in C2, we choose sets of replicas
S1 ✓ C1 and S2 ✓ C2 with nS1 = nS2 = ⌧j . To be able
to choose S1 and S2 with nS1 = nS2 = ⌧i, we need ⌧i 
min(nC1 ,nC2), in which case we have ⌧i = 2fC1 + fC2 +1.
The pseudo-code for this bijective sending protocol for
systems that provide replica signing (BS-rs), can be
found in Figure ??. Next, we prove the correctness of
BS-rs:

Proposition 5.3 Let S be a system with Byzantine

failures and replica signing and let C1, C2 2 S. If nC1 >
2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies

Definition ??. The protocol sends 2fC1+fC2+1 messages,

of size O(kvk) each, between C1 and C2.

Proof Choose S1 ✓ C1 and S2 ✓ C2 in accordance with
BS-rs (Figure ??). We have nS1 = nS2 = 2fC1 + fC2 +1.
Let T = {b(r) | r 2 nf(S1)}. By construction, we have
nfS1 = nT � fC1 +fC2 +1. Hence, we have nfT � fC1 +1.
Due to Line ??, each replica in nf(T ) will receive the
message (v, hvir1) from a distinct replica r1 2 nf(S1).
Hence, analogous to the proof of Proposition ??, we can
prove receipt, confirmation, and agreement.

For completeness, we consider the situation in which
replica certificates have constant size. In this case, the
presented version of BS-rs performs too much commu-
nication. We can correct this by only letting fC1 + fC2 +1
replicas send the value v (which assures that at least
a single non-faulty replica in C1 will send value v to
a non-faulty replica r2 2 C2), while all 2fC1 + fC2 + 1
replicas send a replica certificate (which allows replica
r2 to determine that there is agreement on the value v
it received).

Anonymous author(s) XX:3

Table 1 A comparison of cluster-sending protocols that send a value from cluster C1 with nC1

replicas, of which fC1 are faulty, to cluster C2 with nC2 replicas, of which fC2 are faulty. For
each protocol P , Protocol specifies its name; Robustness specifies the conditions P puts on the
clusters; Message Steps specifies the number of messages exchange steps P performs (‡ indicates the
normal-case complexity when the coordinator in C1 is non-faulty); O. (Optimal) specifies whether P
has optimal message complexity; and U. (Unreliable) specifies whether P can deal with unreliable
communication. In this diagram, Ppcs is our Pruned Synchronous Probabilistic Cluster-Sending

protocol and Plcs is our Synchronous Probabilistic Linear Cluster-Sending protocol.

Protocol Robustness Message Steps O. U.
(expected) (worst)

PBS-cs [13] min(nC1 , nC2) > fC1 + fC2 fC1 + fC2 + 1 � �
PBS-cs [13] nC1 > 3fC1 , nC2 > 3fC2 max(nC1 , nC2) � �

GeoBFT [12] nC1 = nC2 > 3 max(fC1 , fC2) fC2 + 1‡ �(fC1nC2) � �

T
hi

s
Pa

pe
r Ppcs nC1 > 2fC1 , nC2 > 2fC2 4 (fC1 + 1)(fC2 + 1) � �

Ppcs nC1 > 3fC1 , nC2 > 3fC2 2 1
4 (fC1 + 1)(fC2 + 1) � �

Plcs min(nC1 , nC2) > fC1 + fC2 4 fC1 + fC2 + 1 � �
Plcs min(nC1 , nC2) > 2(fC1 + fC2) 2 1

4 fC1 + fC2 + 1 � �
Plcs nC1 > 3fC1 , nC2 > 3fC2 3 max(nC1 , nC2) � �

3. Next, we propose pruned Pcs, a fine-tuned version of Pcs that guarantees termination.79

4. In Section 5, we propose the Synchronous Probabilistic Linear Cluster-Sending protocol80

Plcs, that uses cs-step with a specialized randomized scheme to select replicas, this to81

provide cluster-sending in expected constant steps and worst-case linear steps, which is82

optimal.83

5. Finally, in Section 6, we discuss how Pcs, Ppcs, and Plcs can operate in environments84

with asynchronous and unreliable communication.85

A summary of our findings in comparison with existing techniques can be found in Table 1.86

Furthermore, in Section 2, we introduce the necessary terminology and notation, in Section 7,87

we conclude on our findings, and, due to space considerations, Appendices A–E provide all88

proof details not included in the main paper.89

2 The Cluster-Sending Problem90

Before we present our probabilistic cluster-sending techniques, we first introduce all necessary91

terminology and notation. The formal model we use is based on the formalization of the92

cluster-sending problem provided by Hellings et al. [13]. If S is a set of replicas, then f(S) ™ S93

denotes the faulty replicas in S, whereas nf(S) = S \ f(S) denotes the non-faulty replicas in94

S. We write nS = |S|, fS = |f(S)|, and nfS = |nf(S)| = nS ≠ fS to denote the number of95

replicas, faulty replicas, and non-faulty replicas in S, respectively. A cluster C is a finite set96

of replicas. We consider clusters with Byzantine replicas that behave in arbitrary manners.97

In specific, if C is a cluster, then any malicious adversary can control the replicas in f(C) at98

any time, but adversaries cannot bring non-faulty replicas under their control.99

I Definition 2.1. Let C1, C2 be disjoint clusters. The cluster-sending problem is the problem100

of sending a value v from C1 to C2 such that (1) all non-faulty replicas in nf(C2) receive101

the value v; (2) all non-faulty replicas in nf(C1) confirm that the value v was received by102

all non-faulty replicas in nf(C2); and (3) non-faulty replicas in nf(C2) only receive a value v103

if all non-faulty replicas in nf(C1) agree upon sending v.104
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Consequently, systems using traditional consensus have di�culty scaling up to hundreds
of participants. Techniques used in anonymous permissionless blockchains such as Bitcoin
can e�ectively support thousands of participants, however. Unfortunately, these blockchain
techniques incur massive computational costs on all participants, which has raised questions
about the sustainability of the energy consumption of these systems [?, ?]. Even with these
computational costs, the performance of Bitcoin is abysmal, as Bitcoin can only process 7
transactions per second [?].

We see the necessity of fault-tolerant and federated data management but—as outlined
above—we also believe that the current state-of-the-art techniques are too limited and lack
scalability. To combat these limitations, we believe there is a strong need for the development
of more refined scalable designs that provide fault-tolerant and federated data management.

1.1 Our Vision: Specializing for Read-only Workloads
In many practical distributed database and data processing systems, a distinction is made
between read-only workloads and update-workloads [?, ?, ?, ?, ?, ?, ?]. Typically, read-only
workloads are isolated to a single replica, whereas update-workloads are executed by all
replicas (e.g., via a commit protocol [?, ?, ?]). In most cases this improves scalability
significantly, as the majority of workloads are read-only and can be processed in parallel
by individual replicas. Unfortunately, such read-only single-replica optimizations cannot
be applied to state-of-the-art fault-tolerant and federated data management: fault-tolerant
systems need to assure validity of the result of every read-only query in the presence of
malicious replicas. These systems do so by executing every query at all replicas, after which
the issuer of the query can compare the query outcomes and determine which outcome is
valid (supported by a majority).

In many practical situations, workloads need access to the full history of all the data
managed or to large portions thereof. Examples of such workloads are analytics, data
provenance, machine learning, and data visualization. For data-hungry workloads, it makes
little sense to retrieve all data in an ine�cient way via read-only queries. Furthermore,
these workloads are typically computational complex, ruling out their integration within
a fault-tolerant system. To enable these practical workloads, we propose an alternative
hierarchical design. This hierarchical design is sketched in Figure ??.

Read-only workloads

Updates
(e.g., write transactions)

�

�

�

�

�

Malicious

�Analytics

�Data Provenance

�Machine Learning

�Visualization

Figure 1 Schematic overview of hierarchical fault-tolerant and federated data management. At

the core is a Byzantine cluster that manages and stores all data in a fault-tolerant manner. Some of

the replicas in this core can crash or be malicious. The managed data is used by many independent
read-only participants, e.g., for analytics, data provenance, machine learning, and visualization. To

do so, these participants do not need to partake in managing and storing the data, they only need

to reliably learn the data.

In our design, we propose that a Byzantine cluster of replicas (e.g., a permissioned
blockchain system) manages the data by coordinating data updates. As the cluster is Byzan-
tine fault-tolerant, it can be used to provide fault-tolerant and federated data management.
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1: event r appends a new decision to Jr do
2: if Jr ”= [ ] and |Jr| mod n = 0 then
3: B := Jr[|Jr| ≠ n : |Jr|].
4: s, c := slicer(B), checksum(B).
5: Broadcast (|Jr|, s, c) to all learners l œ L.

Figure 3 The information dispersal step of the delayed-replication algorithm running at every

non-faulty replica r œ G.

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12
Update decision ≠æ

No dispersal First 4 update decisions Second 4 update decisions

Learned

JR[0 : 4]

Learned

JR[4 : 8]

Figure 4 A schematic representation of the interactions between a cluster R = {r0, r1, r2, b}

and a learner l participating in the information dispersal step. The replica b is Byzantine and sends

invalid messages. The other replicas repeatedly send a valid message encoding 4 decisions from their

update journal. After receiving these messages, l is able to reconstruct (learn) the update decisions

made by R. In specific, after the n = 4-th update decision, l will start receiving messages from

which it can reconstruct the first four update decisions.

I Theorem 3.2. Consider the information dispersal step of Figure ?? running at replica

r œ G after r appends the fl-th decision, fl Ø 1, to Jr. After this step, r has sent Âfl/nÊ

messages to each learner with a total size of O(c(fl/n) + ÎJrÎ/g), in which c is the size of a

checksum.

Proof. Notice that r only broadcasts messages after every i-th decision, i Ø 1 and i mod n = 0.
Hence, after the fl-th decision, r will have broadcasted m = Âfl/nÊ messages. Consider the
messages sent by r to any learner l œ L. In these messages, the pieces slicer(Jr[(i≠1)n : in]),
1 Æ i Æ m, have a non-constant size and we assume that the remainder of each message has
size “ = �(c). Hence, in total, the m messages send to l have size ‡ at most

‡ Æ

ÿ

1ÆiÆm

(“ + Îslicer(Jr[(i ≠ 1)n : in])Î)

Æ “m +
ÿ

1ÆiÆm

9
ÎJr[(i ≠ 1)n : in]Î

g

:
Æ “m +

ÿ

1ÆiÆm

3
1 + ÎJr[(i ≠ 1)n : in]Î

g

4

Æ “m + m + ÎJr[0 : nm]Î
g Æ m(“ + 1) + ÎJrÎ

g = O(c(fl/n) + ÎJrÎ/g). J

Based on Theorem ??, it is straightforward to determine the number and size of messages
received by each learner.

I Corollary 3.3. Consider the learner l œ L after it has received all messages sent by the

information dispersal steps following the fl-th decision in JR, fl Ø 1. The learner l has

ICDT 2020
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System Checksum Complexity for the learner

Data sent per replica Data received Decode steps
b = 0 None O(s/g) O(s(n/g)) u/n
b < g Simple O(s/g) O(s(n/g))

!g+b
g

"
(u/n)

b < g Tree O(s/g + (u/n) log(n)) O(s(n/g) + u log(n)) u/n

Figure 2 Overview of delayed-replication algorithms running on a cluster of n replicas, of which

b are Byzantine and g are non-faulty. The first two columns describe the system conditions and the

checksums used. The last three columns provide the complexity to sent a journal with u updates

and storage size s to a learner in terms of the data sent per replica, data received by the learner,

and the worst-case number of decode steps the learner needs to perform.

behave in accordance to the algorithms and are deterministic: on identical inputs, non-faulty
replicas must produce identical outputs. Notice that we do not make any assumptions on
the learners, each learner can be malicious without a�ecting the operations in R. We write
n = |R|, b = |B|, c = |C|, and g = |G| to denote the number of replicas, Byzantine replicas,
crashed replicas, and non-faulty replicas, respectively. Finally, we assume that g > b, a
minimal condition to distinguish Byzantine and non-Byzantine behavior.

I Definition 2.1. Let (R,L) be a system. The Byzantine learner problem states that each

learner in L will eventually learn of the update decisions made by R.

We will formalize the Byzantine learner problem in terms of learning journal updates.
Let (R,L) be a system. We assume that each replica r œ R maintains an append-only
update journal Jr that consists of a sequence of data updates (e.g., write transactions in
a database system). To work with sequences, we introduce the following notations. Let
S = [s0, . . . , sm≠1] be a sequence. We write S[i] to denote si, S[i : j] to denote [si, . . . , sj≠1],
and |S| to denote the length m of S. Finally, if T is also a sequence, then S is a prefix of
T , denoted S ∞ T , if |S| Æ |T | and S = T [0 : |S|]. We refer to any subsequence S[i : i + n],
i mod n = 0, as a block.

We assume that the non-Byzantine replicas all make the same update decisions in the
same order (e.g., by utilizing a consensus protocol such as Paxos or Pbft [?, ?, ?, ?]). These
updates are not necessarily registered at each replica at exactly the same time. Consequently,
we can only assume that, for each r, q œ (G fi C), either Jr ∞ Jq or Jq ∞ Jr. We write JR to
denote the unique journal Jq, q œ G, that contains the maximum-length sequence of update
decisions all non-faulty replicas agree on. Hence, JR ∞ Jr for all r œ G.

I Example 2.2. Consider a Byzantine cluster R = {r0, r1, r2, b} with

Jr0 = [u0, u1, u2, u3, u4, u5, u6, u7]; Jr1 = [u0, u1, u2, u3, u4, u5, u6];
Jr2 = [u0, u1, u2, u3, u4, u5, u6]; Jb = [u0, u1, u2, uÕ

3
, uÕ

4
].

The update journal of replica b diverges from the other replicas and, hence, b must be
Byzantine. The three non-faulty replicas share the update journal JR = [u1, u2, u3, u4, u5, u6].
Currently, the cluster is deciding on the eight update u7. This update is already fully
processed by r0, whereas replicas r1 and r2 are still processing this update.

I Definition 2.3. Let (R,L) be a system and l œ L a learner. For every i, 0 Æ i < |JR|,

the Byzantine learner problem states that l will eventually learn of the i-th update decision

JR[i]. At the same time, no Byzantine replica b œ B can convince l that any other update

was the i-th update decision made.

formalizing the Byzantine learner problem to support efficient  
                                         analytics for blockchain applications 

introducing the delayed-replication algorithm,   
utilizing information dispersal techniques, 

giving rise to a coordination-free, push-based, minimal communication protocol 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Can a well-crafted system based on a  
classical BFT protocol outperform a modern protocol?

ResilientDB

Fig. 1: Two permissioned applications employing distinct BFT
consensus protocols (80K clients used for each experiment).

distributed applications [20], [21], [22], [23]. We use these
principles to illustrate the design of a high-throughput yielding
permissioned blockchain fabric, ResilientDB. In specific, we
dissect existing permissioned blockchain systems, identify
different performance bottlenecks, and illustrate mechanisms
to eliminate these bottlenecks from the design. For example,
we show that even for a blockchain system, ordering of trans-
actions can be easily relaxed without affecting the security.
Further, most of the tasks associated with transaction ordering
can be extensively parallelized and pipelined. A highlight of
our other observations:

• Optimal batching of transactions can help a system gain
up to 66⇥ throughput.

• Clever use of cryptographic signature schemes can in-
crease throughput by 103⇥.

• Employing in-memory storage with blockchains can yield
up to 18⇥ throughput gains.

• Decoupling execution from the ordering of client trans-
actions can increase throughput by 10%.

• Out-of-order processing of client transactions can help
gain 60% more throughput.

• Protocols optimized for fault-free cases can result in a
loss of 39⇥ throughput under failures.

These observations allow us to perceive ResilientDB as a
reliable test-bed to implement and evaluate enterprise-grade
blockchain applications. 1 We now enlist our contributions:

• We dissect a permissioned blockchain system and enlist
different factors that affect its performance.

• We carefully measure the impact of these factors and
present ways to mitigate the effects of these factors.

• We design a permissioned blockchain system, Re-
silientDB that yields high throughput, incurs low latency,
and scales even a slow protocol like PBFT. ResilientDB
includes an extensively parallelized and deeply pipelined
architecture that efficiently balances the load at a replica.

• We raise eleven questions and rigorously evaluate our
ResilientDB platform in light of these questions.

Note on this work: This paper is not aimed at designing
efficient BFT consensus protocols, for which there already
exists an extensive literature [3], [4], [24], [25], [26]. Further,

1 ResilientDB is available and open-sourced at https://resilientdb.com.

Primary

Malicious

Crashed

Fig. 2: This diagram illustrates a set of replicas of which some
may be malicious or have crashed. One replica is designated as
the primary, which leads the consensus on the received client
request among the backup replicas.

Replica
Replica
Replica

Primary

Client
m

PRE-PREPARE PREPARE COMMIT

Fig. 3: The three-phase PBFT protocol.

this work does not aim at benchmarking open-membership and
permissioned blockchain systems, as done by Blockbench [2].
Moreover, we do not advocate the use of any specific BFT
protocol or permissioned blockchain system, but instead per-
form an in-depth analysis of a single permissioned blockchain
system, to uncover insights that can help both researchers and
practitioners to build next-generation blockchain fabrics.

II. BACKGROUND AND RELATED WORK

Before laying down the foundation for efficient design, we
first analyze existing literature and practices in the domain of
permissioned blockchain.

A. BFT Consensus
At the core of any blockchain application is a BFT consen-

sus protocol, which states that given a client request and a set
of replicas, some of which could be byzantine, the non-faulty
replicas would agree on the order for this client request. We
use Figure 2 to schematically represent consensus.

PBFT [3] is often described as the first BFT protocol
to allow consensus to be incorporated by practical systems.
PBFT follows the primary-backup model where one replica is
designated as the primary and other replicas act as the backup.
PBFT only guarantees a successful consensus among n repli-
cas if at most f of them are byzantine, where n � 3f + 1.

When the primary replica receives a client request, it assigns
it a sequence number and sends a PRE-PREPARE message
to all the backups to execute this request in the sequence
order (refer to Figure 3). Each backup replica on receiving the
PRE-PREPARE message from the primary shows its agreement
to this order by broadcasting a PREPARE message. When a
replica receives PREPARE message from at least 2f distinct
backup replicas, then it achieves a guarantee that a majority

Single-threaded Monolithic Design 
Out-of-ordering Consensus Communication 

De-coupled Ordering and Execution 
Off-Chain Memory Management 

Expensive Cryptographic Practices (DS vs. MAC) 
Smart Contracts Code Generation (Pre-compilation)
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