

Resilient DB: Building Global-Scale Privacy-Preserving Blockchain Fabric

Mohammad Sadoghi

REIMAGINE 2020 Global Blockchain Conference May 18, 2020

Mohammad Sadoghi

Exploratory Systems Lab Department of Computer Science

Mohammad Sadoghi (Principal Investigator)

Jelle Hellings, PostDoc (Fault-tolerant Complexity Analysis)

Suyash Gupta, PhD (Scalable Consensus Meta-Protocols)

Thamir Qadah, PhD (Distributed & Coordination-free Concurrency)

Sajjad Rahnama, PhD (Global Scale Consensus)

Dhruv Krishnan, MSc (Scaling Fabric via Sharding)

Priya Holani, MSc (Scaling Fabric via Sharding)

Shubham Pandey, MSc (Scaling Fabric via RDMA)

Rohan Sogani, MSc (Scaling Fabric via Sharding)

Xinyuan Sun, BSc (Scaling Fabric via RDMA)

FPGA Acceleration: FQP (Flexible Query Processor) [VLDB'10, ICDE'12, VLDB'13, ICDE'15, SIGMOD Record'15, ICDE'16, USENIX ATC'16, ICDCS'17, ICDE'18, TKDE'19]

SQL

Analytics

SQL Transactions **SQL** Analytics

High-dimensional Indexing: (e.g., BE-Tree, BE-topK) [SIGMOD'11, ICDE'12, TODS'13, ICDCS'13, ICDE'14, ICDCS'17, Middleware'17]

Concurrency Control Protocols: (e.g., 2VCC, QueCC - Best Paper Award) [VLDB'13, VLDB'14, VLDBJ'16, Middleware'16, TDKE'15, SIGMOD'15, ICDE'16, Middleware'18]

QueCC: Queue-Oriented Planning and Execution Architecture

Concurrency Control Protocols: (e.g., 2VCC, QueCC - Best Paper Award) [VLDB'13, VLDB'14, VLDBJ'16, Middleware'16, TDKE'15, SIGMOD'15, ICDE'16, Middleware'18]

[VLDB'12, ICDE'14, ICDCS'16, EDBT'18, 34 filed US patents]

Graphs on SQL: (e.g., GRFusion) [SIGMOD'18, EDBT'18] 7

Consensus Protocols: (e.g., ResilientDB, GeoBFT, PoE, MBFT, Delayed Replication, CSP, Blockplane) [VLDB'20, ICDCS'20, ICDT'20, DISC'19 (2x), SC'19, ICDE'19, arXiv'19 (6x)]

Transaction Processing on Modern Hardware.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019

Fault-Tolerant Distributed Transactions on Blockchain.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers, to appear 2020

Advancements TV With Ted Danson - CNBC, CityAM, Medium, Yahoo! Finance, Market Insider, CoinDesk, Crypto Media, Davis Enterprise, Times Union, WBOC TV/Radio

Books Transaction Processing on Modern Hardware.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019

Fault-Tolerant Distributed Transactions on Blockchain.

Synthesis Lectures on Data Management, Morgan & Claypool Publishers, to appear 2020

ExpoDB Architecture

Quantifiable Resiliency (Graduate Student Experiments)

Aloha Lake, Desolation Wilderness 15 Miles Long 2,500 Feet Elevation Gain (8,700 Feet at Summit)

Tomales Point Trail, Point Reyes National Seashore 9.4 Miles Long 1,579 Feet Elevation Gain

Non-Quantifiable Resiliency

Proof-of-Execution: Reaching Consensus Through Fault-Tolerant Speculation [arXiv'19]

Out-of-Order message processing to reduce replica idleness Speculative Execution with revertible/divergent replicas & eager/irrevertible client commit

Fault-tolerant Proof-of-Execution Protocol

PoE scales beyond <u>32 replicas</u>, in presence of failures, outperforms <u>PBFT up to 40%</u>

Proof-of-Execution: Reaching Consensus Through Fault-Tolerant Speculation [arXiv'19]

Out-of-Order message processing to reduce replica idleness Speculative Execution with revertible/divergent replicas & eager/irrevertible client commit

introducing linear message complexity

Linearized Proof-of-Execution Protocol

MultiBFT: Scaling Blockchain Databases Through Parallel Resilient Consensus Paradigm [arXiv'19]

A wait-free meta-protocol...

Designate multiple replicas as Primaries!

Run multiple parallel consensuses on each replica independently

Fault-tolerant MultiBFT Protocol

20

MultiBFT: Scaling Blockchain Databases Through Parallel Resilient Consensus Paradigm

GeoBFT: Global Scale Resilient Blockchain Fabric [VLDB'20]

A meta-protocol, locally running any BFT in parallel and independently Global ordering provably requires only linear communication Provably sufficient for primary to send a certificate to at most f+1 replicas, malicious primary is detectable and replaceable

Fault-tolerant GeoBFT Protocol

GeoBFT: Global Scale Resilient Blockchain Fabric [VLDB'20]

ResilientDB easily scales across <u>6 countries</u> in <u>4 continents</u> due to GeoBFT protocol.

GeoBFT scales a permissioned blockchain up to <u>60 replicas globally</u>.

The Fault-Tolerant Cluster-Sending Problem [DISC'19]

formalizing the problem of sending a message from one Byzantine cluster to

another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(linear in the size of clusters)

The Fault-Tolerant Cluster-Sending Problem [DISC'19]

formalizing the problem of sending a message from one Byzantine cluster to

another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(linear in the size of clusters)

		Protocol	System	Robustness	Messages	Message size
	ar	RB-bcs	Omit	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > \mathbf{f}_{\mathcal{C}_2}$	$(\mathbf{f}_{\mathcal{C}_1} + 1) \cdot (\mathbf{f}_{\mathcal{C}_2} + 1)$	$\mathcal{O}(\ v\)$
_	ine	RB-brs	Byzantine, RS	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > \mathbf{f}_{\mathcal{C}_2}$	$(2\mathbf{f}_{\mathcal{C}_1}+1)\cdot(\mathbf{f}_{\mathcal{C}_2}+1)$	$\mathcal{O}(\ v\)$
	h-l	RB-bcs	Byzantine, RS	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > \mathbf{f}_{\mathcal{C}_2}$	$(\mathbf{f}_{\mathcal{C}_1} + 1) \cdot (\mathbf{f}_{\mathcal{C}_2} + 1)$	$\mathcal{O}(\ v\ + \mathbf{f}_{\mathcal{C}_1})$
	ou	RB-bcs	Byzantine, CS	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > \mathbf{f}_{\mathcal{C}_2}$	$(\mathbf{f}_{\mathcal{C}_1}+1)\cdot(\mathbf{f}_{\mathcal{C}_2}+1)$	$\mathcal{O}(\ v\)$
		PBS-bcs	Omit	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	$\mathcal{O}(\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2})) \text{ (optimal)}$	$\mathcal{O}(\ v\)$
	ear	PBS-brs	Byzantine, RS	$\mathbf{n}_{\mathcal{C}_1} > 4\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 4\mathbf{f}_{\mathcal{C}_2}$	$\mathcal{O}(\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2})) \text{ (optimal)}$	$\mathcal{O}(\ v\)$
	line	PBS-bcs	Byzantine, RS	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	$\mathcal{O}(\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2}))$	$\mathcal{O}(\ v\ + \mathbf{f}_{\mathcal{C}_1})$
		PBS-bcs	Byzantine, CS	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	$\mathcal{O}(\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2}))$ (optimal)	$\mathcal{O}(\ v\)$

Brief Announcement: The Fault-Tolerant Cluster-sending Problem. DISC 2019

Byzantine Cluster-Sending in Expected Constant Communication [arXiv'20]

formalizing the problem of probabilistically sending a message from one

Byzantine cluster to another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(expected constant message complexity)

J	Protocol	Robustness	Mes	sage Steps	О.	U.
			(expected)	(worst)		
	PBS-cs [13]	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > \mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2}$	$\mathbf{f}_{\mathcal{C}_1}$	$+\mathbf{f}_{\mathcal{C}_2}+1$	\checkmark	×
	PBS-cs [13]	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	max	✓	×	
	GEOBFT [12]	$\mathbf{n}_{\mathcal{C}_1} = \mathbf{n}_{\mathcal{C}_2} > 3 \max(\mathbf{f}_{\mathcal{C}_1}, \mathbf{f}_{\mathcal{C}_2})$	$\mathbf{f}_{\mathcal{C}_2} + 1^{\ddagger}$	$\Omega(\mathbf{f}_{\mathcal{C}_1}\mathbf{n}_{\mathcal{C}_2})$	×	✓
his Paper	PPCS	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 2\mathbf{f}_{\mathcal{C}_2}$	4	$(\mathbf{f}_{\mathcal{C}_1}+1)(\mathbf{f}_{\mathcal{C}_2}+1)$	×	~
	PPCS	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	$2\frac{1}{4}$	$(\mathbf{f}_{\mathcal{C}_1}+1)(\mathbf{f}_{\mathcal{C}_2}+1)$	×	~
	PLCS	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > \mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2}$	4	$\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2} + 1$	<	✓
	PLCS	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > 2(\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2})$	$2\frac{1}{4}$	$\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2} + 1$	\checkmark	✓
	PLCS	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	3	$\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2})$	<	~

Byzantine Cluster-Sending in Expected Constant Communication [arXiv'20]

formalizing the problem of probabilistically sending a message from one

Byzantine cluster to another Byzantine cluster in a reliable manner,

establishing lower bounds on the complexity

of this problem under crash failures and Byzantine failures

(expected constant message complexity)

\mathcal{C}_1 :	R _{1,1}	R _{1,2}	R _{1,3}	R _{1,4}	R _{1,5}	R _{1,6}	R _{1,7}	R _{1,8}							
\mathcal{C}_2 :		¥ R _{2,1}	¥ R _{2,2}	¥ R2,3	₩ R _{2,4}	$\mathbf{k}_{\mathrm{R}_{2,5}}$	¥ R _{2,6}	R2,7							
	Ċ						\bigtriangledown			Protocol	Robustness	Mes (expected)	ssage Steps (worst)	0.	U.
								_		PBS-cs [13]	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > \mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2}$	$\mathbf{f}_{\mathcal{C}_1}$	$+\mathbf{f}_{\mathcal{C}_2}+1$	✓	×
							$PBS-CS [13] \mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2} \qquad \max$		$\mathbf{x}(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2})$	✓	×				
										GeoBFT $[12]$	$\mathbf{n}_{\mathcal{C}_1} = \mathbf{n}_{\mathcal{C}_2} > 3 \max(\mathbf{f}_{\mathcal{C}_1}, \mathbf{f}_{\mathcal{C}_2})$	$\mathbf{f}_{\mathcal{C}_2} + 1^{\ddagger}$	$\Omega(\mathbf{f}_{\mathcal{C}_1}\mathbf{n}_{\mathcal{C}_2})$	×	~
								_	ម	PPCS	$\mathbf{n}_{\mathcal{C}_1} > 2\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 2\mathbf{f}_{\mathcal{C}_2}$	4	$(\mathbf{f}_{\mathcal{C}_1}+1)(\mathbf{f}_{\mathcal{C}_2}+1)$	×	~
									ape	Ppcs	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	$2\frac{1}{4}$	$(\mathbf{f}_{\mathcal{C}_1}+1)(\mathbf{f}_{\mathcal{C}_2}+1)$	×	~
								ſ	n L L L L	PLCS	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > \mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2}$	4	$\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2} + 1$	~	~
								[Lhi:	PLCS	$\min(\mathbf{n}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2}) > 2(\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2})$	$2\frac{1}{4}$	$\mathbf{f}_{\mathcal{C}_1} + \mathbf{f}_{\mathcal{C}_2} + 1$	✓	~
										PLCS	$\mathbf{n}_{\mathcal{C}_1} > 3\mathbf{f}_{\mathcal{C}_1}, \mathbf{n}_{\mathcal{C}_2} > 3\mathbf{f}_{\mathcal{C}_2}$	3	$\max(\mathbf{n}_{\mathcal{C}_1},\mathbf{n}_{\mathcal{C}_2})$	✓	~

Coordination-Free Byzantine Replication With Minimal Communication Costs [ICDT'20]

formalizing the Byzantine learner problem to support efficient

analytics for blockchain applications

introducing the delayed-replication algorithm,

utilizing information dispersal techniques,

giving rise to a coordination-free, push-based, minimal communication protocol

Coordination-Free Byzantine Replication With Minimal Communication Costs [ICDT'20]

formalizing the Byzantine learner problem to support efficient

analytics for blockchain applications

introducing the delayed-replication algorithm,

utilizing information dispersal techniques,

giving rise to a coordination-free, push-based, minimal communication protocol

Permissioned Blockchain Through the Looking Glass: Architectural and Implementation Lessons Learned [ICDCS'20]

Single-threaded Monolithic Design Out-of-ordering Consensus Communication De-coupled Ordering and Execution Off-Chain Memory Management Expensive Cryptographic Practices (DS vs. MAC) Smart Contracts Code Generation (Pre-compilation)

Revisit Resiliency (Graduate Student Experiment Continues)

Mount Tallac, Lake Tahoe 12.1 Miles Long 3,931 Feet Elevation Gain (9,738 Feet at Summit)

Fostering Resiliency

(Offering Stress Management and Well-Being Courses at UC Davis)

Spring 2020

Tamarkoz®.

ECS 298 (CRN 66553):

Days: Wednesdays

INSTRUCTORS:

Mohammad Sadoghi, Ph.D. Nasim Bahadorani, DrPH.

Time: 7:00 pm - 8:00 pm

Graduate Survival Kit

Learn the foundation & working

knowledge of stress reduction based on a unique heart-centered

meditation practice referred to as

The M.T.O. Tamarkoz® method is

the art of self-knowledge through

concentration and meditation.

The California Aggie, April 6, 2020

BE BALANCED

THANK YOU

For Complete References

