
A hands-on tutorial:
Working with Smart Contracts in

Ethereum

Mohammad H. Tabatabaei
Roman Vitenberg

Kaiwen Zhang
Mohammad Sadoghi
Hans-Arno Jacobsen

Different tools provide different functionality
Tools

Remix Ganache MyEtherWallet Geth
Activities

1 Configure the Blockchain - - - +

2 Deploy the Blockchain
Not

Persistent
+ - +

3 Develop the contract + - - +

4 Compile the contract + - - +

5 Create user account + + + +

6 Deploy the contract + - + +

7
Create the UI for

interacting
+ - + +

8 Run the client + - + +

9
Interact with the contract &

have fun
+ - + +

10 Monitor the execution - + - +

1

3

4

1

2

5

10

6

78

9

https://remix.ethereum.org/

http://truffleframework.com/ganache/

https://github.com/kvhnuke/etherwallet/releases/tag/v3.21.06

http://truffleframework.com/ganache/
http://truffleframework.com/ganache/
https://github.com/kvhnuke/etherwallet/releases/tag/v3.21.06

Use which tool for what purpose? (1/2)

• Use Geth for everything?
• Powerful but command-line only

• What should I use?
• As a starting point for developing contracts – mostly Remix

• What cannot Remix do?
• Configure the blockchain
• Create real (non-test) user accounts and transfer funds between user

accounts
• Monitor the execution
• Other advanced operations

2

• Why use Ganache?
• To inspect and monitor the execution
• To visualize certain elements in a better way

• Why use MyEtherWallet?
• To create a personal wallet (real user account), transfer funds between user

accounts, and interact with contracts
• Metamask as another alternative

3

Use which tool for what purpose? (2/2)

Smart Contracts

4

• In the form of code
• Stored on a blockchain
• Executes under given conditions

- K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by Step Towards Creating a Safe Smart Contract:
Lessons and Insights from a Cryptocurrency Lab,” IACR Cryptology ePrint Archive, vol. 2015, p. 460, 2015.

Smart Contracts Example (1/3)

5

Blockchain

Contract

Owner

Tenant

Create

• Owner creates the contract
• Contract replicates among all the nodes

Smart Contracts Example (2/3)

6

Blockchain

Owner

Tenant
Deposit

• Tenant deposits to the contract
• Contract’s State changes on all the nodes

Smart Contracts Example (3/3)

7

Blockchain

Owner

Tenant

Check Balance

• Owner checks the contract’s balance
• Contract’s state is fetched from one node

Smart Contracts

1. Developing a simple contract
2. Compiling the contract
3. Deploying the contract
4. Interacting with the contract
5. Adding more functions to our code to make it more practical

8

Open Remix : remix.ethereum.org
• An open source tool for writing, compiling and testing Solidity contracts

9

Solidity

• Object-oriented
• Contract-oriented
• High-level language
• Influenced by C++, Python, and JavaScript
• Target Ethereum Virtual Machine (EVM)

Serpent as an Alternative?
• Low-level language
• Complex compiler

10

Start Coding
• Setter and Getter: Set and get the information.

Getter function

Setter function

Variable

11

Compile the Contract
• Compile tab: Start to compile button

12

Set Deployment Parameters (1/2)
• Run tab: Environment = JavaScript VM

13

Set Deployment Parameters (2/2)

• JavaScript VM: All the transactions will be executed in a sandbox blockchain in the
browser. Nothing will be persisted and a page reload will restart a new blockchain
from scratch, the old one will not be saved.

• Injected Provider: Remix will connect to an injected web3 provider. Mist and
Metamask are example of providers that inject web3, thus they can be used with
this option.

• Web3 Provider: Remix will connect to a remote node. You will need to provide
the URL address to the selected provider: geth, parity or any Ethereum client.

• Gas Limit: The maximum amount of gas that can be set for all the instructions of a
contract.

• Value: Input some ether with the next created transaction (wei = 10-18 of ether).

14

Types of Blockchain Deployment

• Private: e.g., Ganache sets a personal Ethereum blockchain for
running tests, executing commands, and inspecting the state while
controlling how the chain operates.
• Public Test (Testnet): Like Ropsten, Kovan and Rinkeby which are

existing public blockchains used for testing and which do not use real
funds. Use faucet for receiving initial virtual funds.
• Public Real (Mainnet): Like Bitcoin and Ethereum which are used for

real and which available for everybody to join.

15

Deploy the Contract on the Private Blockchain of
Remix

• Run tab: Deploy button

16

Interact with the Contract
• Setter = Red Button: Creates transaction
• Getter= Blue Button: Just gives information

Press getBalance to see the initial amount

Input a value and press deposit button
to create and confirm the transaction

Press getBalance again to see the result

1

2

3
17

Additional features

• Transferring funds from an account to the contract
• Saving the address of the contract creator
• Limiting the users’ access to functions
• Withdrawing funds from the contract to an account

18

Receive ether (1/2)
• Transfer money to the contract

Payable keyword
allows receiving

ether

We can get the
balance of the

contract 19

Hidden Code:
Address(this).balance += msg.value;

Receive ether (2/2)

Input the value as wei
(10-18 of ether)

Click the receiveDeposit button to
transfer the money to the

contract

2

1

20

Constructor
• Will be called at the creation of the instance of the contract

We want to save
the address of the
contract creator

21

Withdraw funds
• Modifier: Conditions you want to

test in other functions
• First the modifier will execute, then

the invoked function

Transfer some money from the
contract’s balance to the owner

22

Only the contract’s creator is
permitted to withdraw

Now deploying a smart contract on an
external blockchain

23

Tools
Remix Ganache MyEtherWallet Geth

Activities
1 Configuring the Blockchain - - - +

2 Deploying the Blockchain Not
Persistent + - +

3 Developing the contract + - - +

4 Compiling the contract + - - +

5 Creating user account + + + +

6 Deploying the contract + - + +

7
Creating the UI for
interacting

+ - + +

8 Run the client + - + +

9
Interact with the contract &
have fun

+ - + +

10 Monitoring the execution - + - +

Run Ganache

24

MyEtherWallet

25

• add your custom network that you want to test your contracts on

Import your RPC server address and the port number from
Ganache to MyEtherWallet

26

MyEtherWallet

27

• Contracts tab: Deploy Contract

Remix

28

• Type your contract and compile it

Click on Details Button: access ByteCode to import it to MyEtherWallet

29

Remix

Access your private key for signing your contract in MyEtherWallet.

30

Ganache

1. Paste the
contract’s ByteCode
from Remix

2. Gas Limit will
automatically be
calculated

3. Paste your private
key from Ganache

4. Click Unlock

5. Now you have
access to your wallet 31

MyEtherWallet

Click on Sign Transaction button to deploy your contract

32

MyEtherWallet

You can see now you have one transaction for your address and your
balance has been changed because of the amount of gas you paid for
creating the contract.

33

Ganache

Extract the contract address
from Ganache

Extract the ABI (Application Binary
Interface) of the code from Remix

Interact with the contract in MyEtherWallet
(Import the contract address and the ABI into the MyEtherWallet)

Select a function

Interacting with the smart contract

Read

Write

Receive the result

Generate the transaction

Pay some gas

34

Transactions tab: Copy the created contract address

35

Ganache

Copy the ABI
(ABI is the interface that tells MyEtherWallet how to interact with the
contract)

36

Remix

Contracts tab:
Interact with Contract = Paste the contract address from Ganache and
the ABI from Remix

37

MyEtherWallet

You now can interact with the contract by selecting a function and
invoking it

38

MyEtherWallet

If you select the getValue function you will receive the value
without paying any gas
(There is no operation cost for getting information)

39

MyEtherWallet

If you choose a function that updates the state of the contract,
you will need to pay gas for it in a transaction.

40

MyEtherWallet

Create Custom Ethereum Blockchain

• Instead of using Ganache with its default properties for private
blockchain you can run your own blockchain
• Install Geth: One of the implementations of Ethereum written in Go
• Create the genesis block
• Create storage of the blockchain
• Deploy blockchain nodes
• Connect MyEtherWallet to your blockchain to interact with it

41

Geth help

42

Genesis block
• The first block in the chain and a json file that stores the configuration

of the chain

• Create and store the file as genesis.json

43

Create the storage of the blockchain
• Go to the directory of the genesis.json file
• Specify directory of your blockchain
• Create the storage from the genesis block

Folder name of your
blockchain

44

Inside the Blockchain Folder

• geth folder: Store your database
• keystore: Store your Ethereum accounts

45

Start the Ethereum peer node

• Start the blockchain

• Networkid provides privacy for your network.
• Other peers joining your network must use the same networkid.

46

Blockchain started
• Type
admin.nodeInfo
to get the
information
about your
current node

47

Create an account

• Type personal.newAccount to create as many accounts as you need

• See the created account(s)

48

Mining

• Type miner.start() to start mining

• Type miner.stop() to stop mining

49

Thank You!

Any Questions?

50

Mohammad H. Tabatabaei
mohammht@ifi.uio.no

