Chemistry behind Agreement

Suyash Gupta
SkyLab
UC Berkeley
gupta-suyash.github.io

Mohammad Javad Amiri
UPenn
seas.upenn.edu/~mjamiri

Mohammad Sadoghi
ExpoLab
UC Davis
expolab.org
• What is this talk about?
 Agreement protocols.

• What is an agreement protocol?
 Helps to reach multiple parties a common decision.

• Why agreement?
 Distributed systems with multiple nodes are common.

• Any real-world application?
 Every distributed database system!
Agreement Protocol Types

- **Commit Protocols**
 - Agreement on transaction commit or abort.
 - Two-phase commit, Three-phase commit.

- **Crash Fault-Tolerant (CFT) Protocols**
 - For consistent replication under crashes.
 - Paxos, Raft.

- **Arbitrary Fault-Tolerant (AFT) Protocols**
 - For consistent replication under arbitrary faults (e.g. malicious).
 - PBFT, PoE.
New Protocols are still in Production

- **BFT Protocols**
 - GeoBFT [VLDB’20], Sharper [Sigmod’21], ByShard[VLDB’21], RCC [ICDE’21], PoE [EDBT’22], ServerlessBFT [ICDE’23]

- **Commit Protocols.**
 - EasyCommit [EDBT’18], QStore [EDBT’20]
So Are we done?

Unfortunately No!
Challenges Due to Disparity

- Incompatible algorithmic designs
- Distinct schematic representations.
- Lack of common proof systems.

Disparity hurts Adoption
Exciting Prior Works

- Calvin [SIGMOD’12], Tapir [SOSP’15], and Janus [OSDI’16] combine commitment and CFT.
- Deneva [VLDB’17] framework helps to express different CC techniques.
- Sujaya et al. [VLDB’19] present a framework to explain a subset of commitment and CFT protocols.
- DataCalculator [SIGMOD’18] presents a unified framework for data-structures.
Our Prior Attempt: Unifying AFT Protocols

Open sourced at https://resilientdb.com/
Vision:
Unified Elemental Framework

Atoms, Elements and Compounds of Agreement.
Atoms

- Smallest indivisible unit of an element.
- Atoms define functional properties of an agreement protocol.
Atoms

- **Failure**
 Crash failure, unexpected restart, or malicious attack.

- **Quorum Size**

 \[n-1 \text{ (2PC), } f+1 \text{ (Paxos), } 2f+1 \text{ (PBFT)}. \]

- **Topology**

 star (centralized), clique (decentralized), ring (chain).

- **Data Distribution**

 data sharding and/or replication.
Elements

- Composed of one or more atoms.
- Represent the phases of an agreement protocol.
Elements

- **Proposal (P)**
 - Proposal sent by a leader that includes a client transaction.

- **Vote (V)**
 - A node’s vote on the leader’s proposal.
 - Commit protocols \rightarrow abort or commit vote.
 - AFT protocols \rightarrow support for only valid proposal.

- **Prepare (Pp) and Commit (Co)**
 - Leader attempts to inform nodes about common decision.
 - Not all protocols require both the elements.
Elements

● Execution (X)
 ○ Execution of client transactions.
 ○ Order-then-execute vs. Execute-then-order.

● Checkpoint (Ch)
 ○ State exchange to ensure a common state across nodes.

● Leader Election (Le)
 ○ Replacement of current leader when it fails.
 ○ New leader is expected to help commit the current proposal.
Agreement Protocols: Compounds of Elements and Atoms
Elemental Protocols

2PC: \[\langle \text{Pr} \rightarrow \text{V}^{\dagger} \rightarrow \text{Co} \rightarrow \text{X}^{\circ} \rangle\]

3PC: \[\langle \text{Pr} \rightarrow \text{V}^{\dagger} \rightarrow \text{Pp} \rightarrow \text{V}^{\dagger} \rightarrow \text{Co} \rightarrow \text{X}^{\circ} \rangle\]

Paxos: \[\parallel \text{Pr} \rightarrow \text{V} \rightarrow \text{Co} \rightarrow \text{X}^{\circ} \parallel\]

PBFT: \[\parallel \text{Pr} \rightarrow \text{V} \rightarrow \text{Pp} \rightarrow \text{V} \rightarrow \text{Co} \rightarrow \text{X}^{\circ} \parallel\]
Elemental Protocols

DPaxos: \[\parallel Pr \rightarrow C_{o}^{\oplus} \rightarrow X^{\circ} \parallel \]

DPBFT: \[\parallel Pr \rightarrow P_{p}^{\oplus} \rightarrow C_{o}^{\oplus} \rightarrow X^{\circ} \parallel \]
What’s More?

- Reduced Phase Consensus protocols.
 SpecPaxos, Zyzzyva, PoE

- Multi-Leader (parallel) consensus protocols.
 Mencius, RCC

- Global-scale consensus protocols.
 GeoBFT, Steward, GEC, Ziziphus

- Sharded-replicated consensus protocols.
 Spanner, MDCC, Sharper, RingBFT, ByShard
Conclusions and Future Work

Our vision is to design a framework that unifies different agreement protocols and prevents future disparities.

- Designs untouched: deterministic protocols, asynchronous protocols, node recovery and reconfiguration, DAG-based ordering.
- Unifying framework should permit arguing about properties like totality, validity, consistency, and termination.

Thank You