Chemistry behind Agreement

Suyash Gupta

SkyLab UC Berkeley gupta-suyash.github.io

Mohammad Javad Amiri

UPenn seas.upenn.edu/~mjamiri

Mohammad Sadoghi

ExpoLab UC Davis expolab.org

• What is this talk about?

Agreement protocols.

Helps to reach multiple parties a common decision.

Why agreement?

Distributed systems with multiple nodes are common.

Any real-world application?

Every distributed database system!

Agreement Protocol Types

Commit Protocols

- Agreement on transaction commit or abort.
- o Two-phase commit, Three-phase commit.

Crash Fault-Tolerant (CFT) Protocols

- For consistent replication under crashes.
- o Paxos, Raft.

Arbitrary Fault-Tolerant (AFT) Protocols

- o For consistent replication under arbitrary faults (e.g. malicious).
 - PBFT, PoE.

New Protocols are still in Production

- BFT Protocols
 - GeoBFT [VLDB'20], Sharper [Sigmod'21], ByShard[VLDB'21],
 RCC [ICDE'21], PoE [EDBT'22], ServerlessBFT [ICDE'23]

- Commit Protocols.
 - EasyCommit [EDBT'18], QStore [EDBT'20]

So Are we done?

Unfortunately No!

Challenges Due to Disparity

- Incompatible algorithmic designs
- Distinct schematic representations.
- Lack of common proof systems.

Disparity hurts Adoption

Exciting Prior Works

- Calvin [SIGMOD'12], Tapir [SOSP'15], and Janus [OSDI'16] combine commitment and CFT.
- **Deneva [VLDB'17]** framework helps to express different CC techniques.
- Sujaya et al. [VLDB'19] present a framework to explain a subset of commitment and CFT protocols.
- **DataCalculator** [SIGMOD'18] presents a unified framework for data-structures.

Our Prior Attempt: Unifying AFT Protocols

Vision: Unified Elemental Framework

Atoms, Elements and Compounds of Agreement.

Atoms

- Smallest indivisible unit of an element.
- Atoms define functional properties of an agreement protocol.

Atoms

Failure

Crash failure, unexpected restart, or malicious attack.

Quorum Size

n-1 (2PC), f+1 (Paxos), 2f+1 (PBFT).

Topology

star (centralized), clique (decentralized), ring (chain).

Data Distribution

data sharding and/or replication.

Elements

- Composed of one or more atoms.
- Represent the phases of an agreement protocol.

Elements

- Proposal (P)
 - o Proposal sent by a leader that includes a client transaction.
- Vote (V)
 - o A node's vote on the leader's proposal.
 - Commit protocols → abort or commit vote.
 - AFT protocols → support for only valid proposal.
- Prepare (Pp) and Commit (Co)
 - Leader attempts to inform nodes about common decision.
 - Not all protocols require both the elements.

Elements

Execution (X)

- Execution of client transactions.
- Order-then-execute vs. Execute-then-order.

• Checkpoint (Ch)

State exchange to ensure a common state across nodes.

• Leader Election (Le)

- Replacement of current leader when it fails.
- New leader is expected to help commit the current proposal.

Agreement Protocols: Compounds of Elements and Atoms

Elemental Protocols

3PC:
$$\langle Pr | V^{\ddagger} - Pp - V^{\ddagger} - Co - X^{\circ} \rangle$$

Paxos: $\|Pr - V - Co - X^{\circ}\|$

PBFT: || Pr | — V — Pp — V — Co — X°||

2PC: $\langle Pr - V^{\ddagger} - Co - X^{\circ} \rangle$

Elemental Protocols

DPaxos: $\parallel \operatorname{Pr} - C_0^{\oplus} - X^{\circ} \parallel$

DPBFT: $\parallel \Pr - \Pr^{\oplus} - C_0^{\oplus} - X^{\circ} \parallel$

What's More?

• Reduced Phase Consensus protocols.

SpecPaxos, Zyzzyva, PoE

Multi-Leader (parallel) consensus protocols.

Manaius DCC

Mencius, RCC

Global-scale consensus protocols.

GeoBFT, Steward, GEC, Ziziphus

Sharded-replicated consensus protocols.

Spanner, MDCC, Sharper, RingBFT, ByShard

Conclusions and Future Work

Our vision is to design a framework that unifies different agreement protocols and prevents future disparities.

- Designs untouched: deterministic protocols, asynchronous protocols, node recovery and reconfiguration, DAG-based ordering.
- Unifying framework should permit arguing about properties like totality, validity, consistency, and termination.

Thank You