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Knowledge Graphs and Translational Embeddings Ontology-aware embeddings

Assume a knowledge graph: These models represent as a translational Ontology-unaware embeddings may violate semantics:
. 1 s - vector. Learning is achieved by minimizing the cost: (drugl, target, proti) (uril, uri?, uriB)
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This model, TransE [1], was . s P ;.Q-C_ b Ontology-aware Ontology-unaware
And an embedding mapping R g iInspired by word2vec. The cost R a7 , . , , ,
ang : § % COGm oer triple is: S yes This can regult Ig mfe.rred triples (i.e. facts) that violate
% S e the semantic constraints of the graph:
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EmbedS modeling EmbedS Cost Model and Performance
In Embeds, we model as points, as sets EmbedsS assigns a cost for violating semantic constraints 4 - -
. ] . . ' Performance: Initial experimental evaluation on a
of points (an n-sphere, with a central vector and a radius), For example: renchmark dataset and an ad hoc dataset show

and as sets of pairs of points (modeled

analogously). competitive performance.

wn18 dataset:
hits@10: 94.9%, MRR: 0.560 (HMR: 1.79)

Example: for an
| RDFS triple

(A, rdfs:subClassOf, B)

n A
R - the cost assigned is R™ P =84.2% and a Recall = 83.9%, f-measure: 84.0%
4 \ shown as a red error (optimizing the geometrical interpretation)
~ bar.
dbpedia_v2 dataset:

EmbedsS: hits@10: 22.7%, MRR: 0.133 (HMR: 7.52)

Transk: hits@10: 11.6%, MRR: 0.054 (HMR: 18.52)
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Scalability: EmbedS uses Approximate Nearest Neighbor
iIndexing for scalable learning.




