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Assume a knowledge graph:

EmbedS modeling
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And an embedding mapping 
entities and relations:
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Cost for a triple in red.
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These models represent relations as a translational 
vector. Learning is achieved by minimizing the cost:

 This model, TransE [1], was 
inspired by word2vec. The cost 
per triple is:

EmbedS Cost Model and Performance
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In EmbedS, we model entities as points, classes as sets 
of points (an n-sphere, with a central vector and a radius), 
and properties as sets of pairs of points (modeled 
analogously).

EmbedS assigns a cost for violating semantic constraints. 
For example:
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Example: for an 
RDFS triple
(A, rdfs :subClassOf, B)

the cost assigned is
shown as a red error 
bar.

Hyper-parameter optimization: Random search [2]. 

Scalability: EmbedS uses Approximate Nearest Neighbor 
indexing for scalable learning.

Ontology-aware embeddings
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Ontology-unaware embeddings may violate semantics:
(uri1, uri2, uri3)
(uri3, uri4, uri5)

(uri2, uri6, uri5)

(drug1, target, prot1)
(prot1, rdf :type, Prot)
(target, rdfs :range, Prot)

Ontology-aware Ontology-unaware

This can result in inferred triples (i.e. facts) that violate 
the semantic constraints of the graph:

(uri7, uri2, uri1) (drug2, target, drug1)
violates semantics!

Performance: Initial experimental evaluation on a 
benchmark dataset and an ad hoc dataset show 
competitive performance. 

wn18 dataset:  
hits@10: 94.9%, MRR: 0.560 (HMR: 1.79) 

P = 84.2% and a Recall = 83.9%, f-measure: 84.0% 
(optimizing the geometrical interpretation) 

dbpedia_v2 dataset:  
EmbedS: hits@10: 22.7%, MRR: 0.133 (HMR: 7.52) 
TransE: hits@10: 11.6%, MRR: 0.054 (HMR: 18.52)
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