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ABSTRACT
While the growing corpus of knowledge is now being encoded
in the form of knowledge graphs with rich semantics, the current
graph embedding models do not incorporate ontology informa-
tion into themodeling.We propose a scalable and ontology-aware
graph embedding model, EmbedS, which is able to capture RDFS
ontological assertions. EmbedS models entities, classes, and prop-
erties differently in an RDF graph, allowing for a geometrical
interpretation of ontology assertions such as type inclusion, sub-
classing, and alike.

1 INTRODUCTION
A growing corpus of knowledge is being encoded in the form
of knowledge graphs, i.e. in the form of (s,p,o) triples which
represent simple subject-predicate-object sentences. These triple-
based formats consist of binary relational data, where an (s,o)
pair is effectively declared to be related by the p binary relation.
Although more complex–or higher arity–information is difficult
to express in this way, the simple syntax enjoyed by these triple-
based data models has proved highly useful for a wide range of
applications and has thus been widely adopted. Today, the linked
open data cloud consists of hundreds of interlinked datasets,
including a few very large knowledge graphs such as Freebase
and DBpedia, which contain billions of triples and millions of
entities.

Modern knowledge graphs are used in applications such as
web search, where graph data provides structured data that com-
plements hyperlink answers, artificial intelligence question an-
swering systems such as Watson and voice-based assistants, and
semantic web query engines that run powerful declarative query
languages such as SPARQL. However, there are still important
issues to be resolved. Even the largest knowledge graphs are ex-
tremely incomplete (i.e. many true facts have yet to be encoded as
triples) and prone to errors (often triples encoding incorrect facts
are included) [12]. The main tasks of link prediction (which con-
sists of predicting new triples) and triplet classification (which
seeks to assign a probability that a certain triple–be it new or
existing–is true or not) look to address these shortcomings. In
this context, there is renewed interest in machine learning over
(binary) relational data. The techniques used vary [9] from rule-
based learning [5] to tensor factorisation, neural network-based
approaches, etc. In this work we focus on latent feature-based
techniques, which are also known as graph embeddings.

Graph embeddings correspond to latent feature statistical re-
lational learning models in that they assume the existence of a
set of n latent features–or random variables–that account for the
predictions we desire (triplet classification or otherwise). As such,
these latent features provide machine learning-friendly represen-
tations of graph data, which can then be used as input to further
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machine learning tools such as neural networks or logistic regres-
sion for classification. The input to a graph embedding model, as
with other statistical relational learning techniques, is a knowl-
edge graph, and the output is a mapping which associates to each
entity in the graph the set of n real-valued latent features. The
name graph embedding refers to the geometrical interpretation
given to the obtained latent features: the entities are interpreted
as points in an n-dimensional real coordinate space, and thus are
said to have been embedded into said space. On the other hand,
the relations of the knowledge graph are varyingly represented
as translational vectors [3], matrix transformations [11], etc.

Graph embedding models are usually trained via the minimi-
sation of a global cost function, which can be expressed as the
sum of a cost assigned to each triple in the knowledge graph.
The minimisation itself is achieved via stochastic gradient de-
scent or similar methods. One of the greatest advantages of graph
embedding models, and especially translational models (loosely
defined as those models which represent relations as one or more
translational vectors, as opposed to transformation matrices), is
that they are able to perform efficiently for very large graphs and
with high accuracy. Current graph embedding models achieve
high performance on basic learning tasks such as link prediction–
ranking the correct entity among the top ten candidates 95% of
the time [10].

Despite the positive scenario described above, one of the great-
est limitations of current graph embedding models is that they
consider a very simple model of the data: they consider a knowl-
edge graph to be a set of triples, where each triple mentions two
entities and one relation, with no special semantics for any par-
ticular triple. In contrast, standard knowledge graphs are often
accompanied by rich ontological information which encodes a
wealth of metadata, including type hierarchies and other con-
straints. Current graph models are entirely agnostic to such meta-
data, and thus ontological triples are usually manually removed
before training (or, if they are included, simply interpreted as
plain data triples). One of the consequences of this is that current
graph embedding models do not directly incorporate constraints
that humans would consider obvious (e.g. knowing that a human
cannot be friends with a building). A huge potential exists in the
rich ontologies that inform modern knowledge graphs, and the
objective of this work is to explore ways in which such ontologies
can become first class citizens of graph embedding models.

Specifically, we explore the problem of graph embedding on
ontology-rich knowledge graphs, where the ontology is specified
in a standard language such as RDFS (more expressive languages
such as OWL2 have been developed, but will not be considered in
this study). Drawing on the geometrical interpretation that graph
embeddings give to their latent features (namely, that entities
are embedded as points in a real coordinate space), we explore
the case where RDFS classes are correspondingly modelled as
sets of points in the same coordinate space, and relations are
embedded as sets of pairs of points. This generalisation of the
basic geometrical interpretation allows for a natural expression
of ontological constraints in the global cost function. The result
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is a model we name EmbedS, which is able to model RDFS onto-
logical constraints as first-class citizens. Along with providing
the precise definitions for the EmbedS cost function, we pro-
vide experimental results that show EmbedS to be comparable to
state-of-the-art graph embedding techniques when measured on
traditional benchmark knowledge graphs, while performing well
on a new ontology-rich dataset we have prepared for the pur-
poses of studying the new enriched geometrical interpretation
that EmbedS provides.

The preliminary results presented in this paper showcase the
potential of extending current graph embedding research to in-
clude ontological information, and will hopefully encourage fur-
ther development of the area. This paper is organised as follows.
In Section 2 we introduce necessary mathematical notation and
preliminary definitions. In Section 3 we introduce the EmbedS
model, its global cost function, and the geometrical interpreta-
tion induced on embedded entities and relations. In Section 4 we
explain the experimental setting and evaluation metrics, includ-
ing a discussion of an ontology-rich benchmark dataset we have
prepared for testing the EmbedS model. Finally, in Section 5 we
present our conclusions and suggest future avenues of work.

2 PRELIMINARIES AND RELATEDWORK
Graph embedding models are usually defined on a knowledge
graph, which is essentially a set of triples, similar to the RDF data
model, but lacking specialised features of the latter, such as the
precise definition of IRIs, literals, and the semantics associated
with certain keyword IRIs. In this section we will introduce nec-
essary definitions, noting the similarities and discrepancies with
the RDF data model. We will then introduce needed concepts
such as graph embeddings, and finally we will discuss related
work.

Let E and P be twomutually disjoint and countably infinite sets
of entities and relations, respectively. A knowledge graph is then
defined as a finite set of triples of the form (s,p,o) ∈ E × P × E.
As such, a knowledge graph can be interpreted as a directed
graph with labelled edges, or as a set of binary relations. As this
work will seek to allow graph embeddings to operate on more
expressive graph data, it is important to note the differences
with the full RDF data model. RDF also considers an infinitely
countable set of literals L, disjoint from E and P, and note that
RDF triples are drawn from the more general set (E ∪ P) × (E ∪
P) ∪ (E ∪ P ∪ L). For example, note that RDF allows relations
to be mentioned in the subject position of a triple, thus blurring
the distinction that exists between relations as edge labels and
nodes of the graph. This is generally disallowed in the traditional
definition of knowledge graph.

The base RDF data model described provides very little seman-
tics other than the basic interpretation of the triple as a fact. To
enrich an RDF dataset, several ontology languages have been
developed, of which RDFS is one of the simplest. RDFS defines
the following core keyword IRIs: rdf :type, rdfs :subClassOf,
rdfs :sub PropertyOf, rdfs :domain, and rdfs :range (abbrevi-
ated type, sc, sp, dom, range, resp.), which are assigned special
semantics in order for richer knowledge—including basic type
systems—to be encoded into RDF format1.

In what follows, we will consider, in addition to the sets E and
P, a set C of classes, also infinitely countable and disjoint from

1The prefixes used are themselves abbreviations. Actually, rdf : expands
to http://www.w3.org/1999/02/22-rdf-syntax-ns# and rdfs : expands to
http://www.w3.org/ 2000/01/rdf-schema#.

the previous two. Furthermore, we define five special relations
type, sc, sp, dom, range ∈ P. We will only consider triples t =
(s,p,o) for which one of the following hold:

• (s,p,o) ∈ E × P × E (called data triples),
• (s,p,o) ∈ E × {type} × C (called type triples),
• (s,p,o) ∈ C × {sc} × C (called subclass triples),
• (s,p,o) ∈ P × {sp} × P (called subproperty triples),
• (s,p,o) ∈ P × {dom} × C (called domain triples),
• (s,p,o) ∈ P × {range} × C (called range triples).

An RDF data graph (or, simply, a graph) D is a finite set of
triples such that for every triple t ∈ D, t is a data triple or a type
triple. An RDFS ontology (or, simply, an ontology) S is a finite
set of triples such that for every triple t ∈ S , t is not a data triple
or a type triple.

Example 2.1. Consider the graphD = {(anne, type, Woman), (jo
hn, type, Man), (john, knows, anne)}. This data about people and
their relationships can be enrichedwith the ontology S = {(Woman,
sc, Person), (Man, sc, Person)} The full dataset is then I = D∪S .
Notice that the semantics of RDFS allow us to conclude facts
which are not explicitly included in the dataset, such as (anne, type,
Person) and (john, type, Person). □

Crucially, the semantics of RDFS allow for inferencing new tri-
ples using a series of inference rules. For example, the following is
an inference rule for RDFS: (x , type, c ), (c, sc,b) → (x , type,b),
which is read as follows: given a dataset I = D∪S which contains
two triples of the form (a, type, C) and (C, sc, B), for any entity
a ∈ E and classes B,C , the triple (a, type,B) may be inferred to
hold [1]. In this context, inferring a triple to hold would cause
a query engine to return the inferred triple as an answer to a
query.

Graph embedding—and statistical relational learning—models
use varying techniques in order to obtain machine-usable repre-
sentations of knowledge graphs. In general, however, the main
problem—that of knowledge base completion—gives a common
direction to these techniques: constructing statistical models of
the data that allow for link prediction (e.g. given an incomplete
fact (T arantino, inspiredBy, ?) return the entity that would
complete the triple) and triple classification (assign a probability
that a triple is true).

The most expressive models involve tensor or matrix factori-
sation techniques, although these are also the models with the
highest complexity, measured in the number of parameters that
must be trained. A well-known example of this is RESCAL [11],
which explains triples using pairwise interactions of the latent
features of entities. Thus, the cost associated to a triple xi jk has
the form:

cost(xi jk ) = e⊤i Wkej .

Other highly expressive models use techniques such as matrix
factorisation, neural tensor networks, and multilayer percep-
trons [6, 8]. The latter, also known as word2vec, was strictly
a word embedding model, but had as an interesting and unin-
tended consequence a translational property among the latent
representation of words: simple binary relations between words
could be captured when interpreting the latent representation—
embedding—of the relation as a translational vector. For exam-
ple, after training on a textual corpus, researchers found that
incomplete sentences such as (Madrid, capitalof, Spain) had
the property that the vector eMadrid + ecapitalof was nearest to
eSpain.
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(ei , ej )

(pαk , p
β
k )

σk

Figure 1: Cost of a triple (ei ,pk , ej ) ∈ I . The circle repre-
sents a 2n-sphere of radius σk centered at (pαk , p

β
k ). The pair

(ei , ej ) is embedded as the 2n-dimensional point (ei , ej ).
The (red) error line shows the cost.

The previous translational property spawned renewed interest
in distance-based models that incorporated a geometrical inter-
pretation for latent representations. The first of these was TransE
[3], and was quickly followed by refinements such as TransH
[13], and TransR [7]. While less expressive, translation-based
models prove more scalable, as their model complexity is lower
and a simpler cost structure allows for more efficient training.

The model proposed in this work draws from research in trans-
lation-based models. Our problem scenario focused on ontology-
rich knowledge graphs, which contain specific semantics for
keyword triples. This metadata has not been considered in previ-
ous work, to the best of our knowledge. The idea of considering
ontological information in training statistical models, however,
has been considered. In [4], type constraints are considered by
removing type-constraint-violating triples, improving training
speed and link predicition performance. They do not incorporate
ontological information into the model as a first class citizen,
however, and neither does the geometrical interpretation of the
model adapt to reflect the presence of this metadata.

3 MODEL
Consider an RDF dataset I = D ∪ S , and let EI ⊆ E, CI ⊆ C , and
PI ⊆ P be the sets of entities, classes, and properties that appear
in I , respectively. Define for each entity ei ∈ EI an n-dimensional
vector of parameters (i.e. variables) ei = (ei1, . . . , ein ); for each
class ci ∈ CI define an n-dimensional vector of parameters
ci = (ci1, . . . , cin ) and a parameter ρi ; and for each property
pi ∈ PI define two n-dimensional vectors of parameters pαi =
(pαi1, . . . ,p

α
in ) and pβi = (p

β
i1, . . . ,p

β
in ) and a parameter σi . We

have thus defined a total of |EI | ·n + |CI | · (n + 1) + |PI | · (2n + 1)
parameters for our model.

For what follows, we first define a distance function distwhich
assigns to every pair of n-dimensional vectors x = (x1, . . . ,xn ),
and y = (y1, . . . ,yn ) a non-negative real value dist(x, y), with
the standard distance function properties2. In this paper, we
choose to set dist(x, y) = ∥x − y∥2 =

∑i=n
i=1 (xi −yi )

2, that is, the
L2 norm of x − y. We also define an activation function act, for
which we choose the rectifier function, act(x ) = max(0,x ).

Assuming that |EI | = NE , |CI | = NC , and |PI | = NP , the cost
L will be a function of all the variables previously defined:

L = L ( e1, . . . , eNE ;c1, . . . , cNC , ρ1, . . . , ρNC ;

pα1 , . . . , p
α
NP
, pβ1 , . . . , p

β
NP
,σ1, . . . ,σNP ).

We now define the precise form of the cost function L. For
the entire dataset, define LI =

∑
t ∈I Lt , where the cost of each

2(a) dist(x, y) ≥ 0, (b) dist(x, y) = 0⇔ x = y, (c) dist(x, y) = dist(y, x), and (d)
dist(x, z) ≤ dist(x, y) + dist(y, z).

ei

cj

ρ j

Figure 2: Cost (red error line) of t = (ei , type, c j ), where
class c j is embedded as an n-sphere at cj with radius ρ j .

triple t = (ei ,pk , ej ) ∈ I (note that ei , ej ∈ EI ∪ CI ∪ PI and
pk ∈ PI ), is defined as follows:

Lt = act
(
dist(ei , pαk ) + dist(ej , p

β
k ) − σk

)
.

The geometrical interpretation of this cost is provided in Sec-
tion 3.1, and is visualized in Figure 1. Next, we define a cost term
for each possible RDFS assertion. For each t ∈ S :

(1) If t = (ei , type, c j ) ∈ S , where ei ∈ EI and c j ∈ CI , define:

LSt = act
(
dist(ei , cj ) − ρ j

)
,

(2) If t = (ci , sc, c j ) ∈ S , where ci , c j ∈ CI , define:

LSt = act
(
dist(ci , cj ) − (ρ j − ρi )

)
,

(3) If t = (pi , sp,pj ) ∈ S , where pi ,pj ∈ PI , define:

LSt = act
(
dist(pαi , p

α
j ) + dist(p

β
i , p

β
j ) − (σj − σi )

)
,

(4) If t = (pi , dom, c j ) ∈ S , where pi ∈ PI and c j ∈ CI , define:

LSt = act
(
dist(pαi , cj ) − σi

)
,

(5) If t = (pi , range, c j ) ∈ S , where pi ∈ PI and c j ∈ CI ,
define:

LSt = act
(
dist(pβi , cj ) − σi

)
.

Finally, we sum, for every triple t ∈ S , the cost of t depending
on the RDFS relation it mentions. In that way, we define the
cost term LS =

∑
t ∈S L

S
t , and thus define the final cost to be

L = LI + LS .

3.1 Geometrical interpretation
We now give a geometrical interpretation to the model defini-
tion. By embedding entities as single n-dimensional vectors we
are modelling them as points in the n-dimensional euclidean
space. Classes, on the other hand, are modelled as regions of the
euclidean space, being embedded as a vector and a radius, rep-
resenting n-spheres. This allows for the following geometrical
interpretation: if an entity is embedded within the region defined
by the embedding of a class, then it is interpreted to be of that
type, and vice-versa (see Figure 2). Finally, properties, insofar as
they represent binary relations, are modelled as 2n-spheres which
constitute a set of pairs of points. Thus, each relation pk ∈ PI has
an embedding which consists of two n-dimensional vectors pαk
and pβk and a radius ρk . The corresponding geometrical interpre-
tation is analogous to the previous case: in 2n-space, a pair (ei , ej )
is interpreted to be related by a relation pk if the 2n-point (ei , ej )
is in the region defined by the 2n-sphere centered at (pαk , p

β )k )

with radius σk (see Figure 1).
The main advantage conferred by this ontology-aware geomet-

rical interpretation is that RDFS classes and ontological assertions
are now first-class citizens of the model. By modelling classes as
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regions of the euclidean space, for example, certain properties
are obtained for free, such as type containment transitivity: if
after training the entity aturing is (correctly) embedded within
the class Researcher, and said class is (correctly) embedded fully
contained within the region corresponding to class Person, then
the transitive fact that aturing is a Person will be provided for
free. In this way, the embedding space will presumably encode
ontological information geometrically.

4 EXPERIMENTAL EVALUATION
In this section we provide preliminary experimental results show-
ing that EmbedS can perform at state-of-the-art levels on a stan-
dard benchmark dataset, while providing a new complementary
triple classification method based on the geometrical interpreta-
tion which shows encouraging results. An exhaustive experimen-
tal evaluation will be left for future work. We use the following
datasets for experimental evaluations:

wn18 Dataset extracted fromWordNet. This dataset consists
of 151,442 triples, 40,943 entities, and 18 relations.

dbpedia32k RDF dataset extracted from DBpedia, consist-
ing of 340,827 triples, 32,657 entities, and 296 relations.

The first dataset has become a standard benchmark in the
graph embedding field [3], and allows for an apples to apples
comparison between our model and existing work. However,
EmbedS has been designed for a fundamentally different problem
setting: that of embedding in ontology-rich RDF data. In order to
test the performance of our model, we have prepared a dataset,
named ‘dbpedia32k’ which includes an RDFS ontology.

We now describe the construction of the dbpedia32k dataset.
It initially draws from three distinct downloads, which are freely
available: the ‘DBpedia Ontology’ file, which contains ontology
triples, the ‘Instance Types’ file, which contains data triples of
the form (a, type,C ) for some entity a and some classC , and the
‘Mappingbased Objects’ file, which contains general data triples,
representing facts on entities present in Wikipedia articles. From
the Mappingbased Objects file first define a relation to be useful
if it appears in at least 1000 triples. We define an entity to be
useful if it is mentioned at least 10 times in the file. A uniform
sample of useful entities is built, keeping only triples which
mention useful relations and these sampled entities only. Finally,
we recalculate useful entities (in the filtered dataset) and remove
triples which mention non-useful entities. We thus obtain the
final set of Mappingbased Objects triples to be used. We complete
the dataset by extracting, from Instance Types, triples (a, type,C )
where a is mentioned in the previous dataset, and similarly we
extract relevant ontology triples from DBpedia Ontology. The
resulting complete dataset is split uniformly into three subsets
for training, validation, and testing, with proportions 0.8, 0.1, and
0.1, respectively.

Selection of hyperparameters of the model is achieved via
random search. Although more sophisticated methods have been
proposed, random search is competitive with these systems [2]
and thus serves our purposes. For each dataset-model choice
(e.g. dbpedia32k with EmbedS), a suitable bounding box for the
hyperparameters of the model is chosen, and training is per-
formed over 500 epochs for 1,000 different random hyperparam-
eter values.

To measure the performance of the model, we use the standard
filtered hits@10 and filtered mean reciprocal rank metrics. The
final model selected after training is that which maximizes the
estimated mean reciprocal rank for the validation dataset.

As EmbedS allows for a geometrical interpretation of triples,
we also evaluate a triple classification performance. For each
triple in the dataset, and an equal amount of randomly generated
false triples (i.e. triples not in the dataset), if t = (ei ,pk , ej ), the bi-
nary classification consists in asking whether the 2n-dimensional
point (ei , ej ) is contained in the sphere centered at (pαk , p

β
k ) with

radius σk or not. Precision and recall values are obtained for this
test.

EmbedS was trained on the wn18 dataset, optimizing for best
validation (filtered) hits@10 value, obtaining 94.9%, which is
comparable to state-of-the-art models such as HolE [10]. HolE
is clearly superior in the mean reciprocal rank metric, however,
with a value of 0.938, compared to 0.560 for EmbedS. It must be
noted, though, that these values correspond to harmonic mean
ranks of 1.07 for HolE and 1.79 for EmbedS. If EmbedS is now
instructed to optimise the geometrical interpretation, we achieve
a precision of 84.2% and a recall of 83.9%, corresponding to an
f-measure of 84.0%.

On the dbpedia_v2 dataset, we find that EmbedS achieves a
performance on hits@10 of 22.7% and a mean reciprocal rank of
0.133 (corresponding to a harmonic mean rank of 7.52). TransE,
on the other hand, performs at 11.6% hits@10 and 0.054 mean
reciprocal rank (corresponding to a harmonic mean rank of 18.52).

5 CONCLUSIONS
In this paper we study the new problem of training graph em-
beddings on ontology-rich datasets. We propose a model which
considers RDFS classes and other ontological information as first-
class citizens, providing a geometrical interpretation for triples
and for ontology assertions. Preliminary experimental results
show that the model can perform at state-of-the-art levels on
standard benchmark datasets, while on ontology-rich datasets
it is also able to provide an alternative form of triple classifica-
tion which takes advantage of the geometrical interpretation.
An exhaustive experimental evaluation is required to be able
to fully understand the limitations of this new model, although
the encouraging results shown seem to indicate that incorporat-
ing ontological information into graph embedding models can
potentially open a new avenue of research.
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