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ABSTRACT

The maturity of RDBMSs has motivated academia and industry to
invest efforts in leveraging RDBMSs for graph processing, where
efficiency is proven for vital graph queries. However, none of these
efforts process graphs natively inside the RDBMS, which is particu-
larly challenging due to the impedance mismatch between the rela-
tional and the graph models. In this demonstration, we present GR-
Fusion, an in-memory relational database system, where graphs are
managed as first-class citizens. GRFusion is realized inside VoltDB.
The SQL and query engines of VoltDB are empowered to declar-
atively define graphs and execute cross-data-model query plans
that consist of relational operators and newly-introduced graph
operators. Using a social network and a real continental-sized road
network covering the entire U.S., we demonstrate the functionality
and the performance of GRFusion in evaluating queries that refer-
ence both relational tables and graphs seamlessly in the same query
execution pipeline. GRFusion shows up to four orders-of-magnitude
speedup in query-time w.r.t. state-of-the-art approaches.!
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1 INTRODUCTION

Graphs are ubiquitous in various application domains, e.g., social
networks, road networks, biological networks, and communication
networks. The data of these applications can be viewed as graphs,
where the vertexes and the edges have relational attributes [15],
or as traditional relational data with latent graph structures [17].
Applications would issue queries that reference the topology of the
graphs along with the data associated with the vertexes and the
edges or other data sources (e.g., relational tables). For instance, a
user may be interested to find the shortest path over a road network
while restricting the search to certain types of roads, e.g., avoiding

!Extensive performance evaluation of GRFusion can be found in [9].
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Figure 1: GRFusion’s architecture allows the query engine
to view/process data in the relational and the graph models.

toll roads. In an RDBMS, the filtering predicates can be expressed
as relational predicates, and they may reference relational tables
that have indirect relation with the queried graphs. We refer to
these queries as graph-relational queries. Graph-relational queries
have two main ingredients: 1) graph operations, e.g., shortest-path
computation, and 2) relational predicates or relational sub-queries,
e.g., selecting specific users from relational tables to find the nearest
hospitals using shortest-path evaluation on top of a graph of a
road-network. Moreover, many graphs have relational schemas
that describe the data associated with their vertexes and edges. For
instance, the popular STRING biological dataset [2] has a publicly
available relational schema.? Associating a graph with a relational
schema gives rise to many interesting graph-relational queries [9].
As RDBMSs are pervasive and mature, various approaches for us-
ing an RDBMS to manage graph data have been proposed, e.g., SQL-
Graph [15], Grail [6]. Commercial systems, e.g., Oracle Graph and
Aster [14], follow the architecture of processing graph-relational
queries using different run-time systems, where the results are com-
bined at the end. These approaches manage graphs as an application
on top of an RDBMS without modifying the internals of the RDBMS.
Consequently, these approaches are either limited to specific graph
queries that can be translated into SQL (e.g., SQLGraph [15]), or
they have performance overheads due to integrating results from
two different execution engines. In this demonstration, we present
GRFusion [9], a realization of a new approach where graphs are
recognized as first-class citizens inside an RDBMS. GRFusion is
implemented inside a centralized version of VoltDB [1, 4], the open-
source implementation of the H-Store in-memory RDBMS [10].

2http://string-db.org/download/database.schema.v10.pdf
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The main idea of GRFusion is to natively process graphs inside
an RDBMS by combining the relational and the graph models under
the same query engine. GRFusion separates the graph topology
from the relational data associated with the vertexes and the edges,
and introduces graph operators to process the graph topology inside
the RDBMS, where the graph operators seamlessly co-exist with
other relational operators in the same query execution pipeline
(or QEP, for short). A graph topology in GRFusion is realized as a
native graph structure, where each vertex or edge has pointers to the
relational tuples describing their attributes. Hence, a graph topology
in GRFusion can be viewed as a traversal index of the relational
tuples of the vertexes and the edges. In short, GRFusion presents
cross-data-model QEPs, where the inputs to the QEPs can be either
relational data or native graph structures. Figure 1 illustrates the
high-level architecture of GRFusion. First, the end-user provides a
declarative statement to create graph views that are initialized from
relational data. Second, the user is allowed to query the graph views
as well as other relational tables or views in the same query. This
demonstration presents how to empower the pervasive relational
databases to support graph traversal queries natively and efficiently.
Consequently, the relational-data owners can process vital graph
queries through their RDBMS systems without the overhead of
migrating their data to a different specialized graph system.

2 OVERVIEW OF GRFUSION

In GRFusion, graphs are assumed to be initially stored in relations.
In the simplest case, a relational table may have a row for each
vertex, and another table could have a row for each edge. Also,
the vertexes/edges data can be obtained through a relational ma-
terialized view that joins or filters multiple tables. For flexibility,
GRFusion provides the user with a declarative language to define
and query graphs. A graph is defined in GRFusion by what we
term graph views. A graph view identifies the relational sources
that store the attributes of the vertexes and edges, namely, the ver-
texes relational-source and the edges relational-source, respectively. A
Graph view defines a view of the relational data in the graph model,
and materializes the graph topology in main-memory in native
graph data structures, specifically as adjacency lists. The materi-
alized graph topology has a native graph representation that holds
pointers (e.g., tuple identifiers) to the relational data that describe
the vertexes and the edges (see Figure 3). The main idea behind
materializing the graph topology is to empower the relational data-
base engine with the ability to realize complex graph algorithms.
Thus, GRFusion helps fill the gap between the relational model and
the massive body of research that assumes a graph model.

Once a graph view is defined, GRFusion allows the user to write
pure graph queries, pure relational queries, or queries that mix both
graph and relational operations. GRFusion’s query engine views
the relational data in either the relational model or the graph model
according to the incoming query. In particular, the graph clauses
in a query are mapped to graph operators in the query execution
pipeline, where a graph operator accepts only graph representations
as input. GRFusion allows the graph operators and the relational
operators to co-exist in the same QEP, where the operator type
determines the data model of viewing the data (i.e., graph views for
the graph model, and relations for the relational model).

Users
1 Edy Smith 09-25-1971
2 Jones Parker 11-21-1980
3 Bill Patrick 02-01-1976

Relationships
1 1 3 01102009 true
2 2 3 12-312008  false

Figure 2: A sample social-network in the relational model.
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Figure 3: A graph view materializes the topology and holds
pointers to the relational data of the vertexes and the edges.

3 CREATING GRAPH VIEWS

GRFusion has a declarative Create Graph View statement to create
graph views initialized from relational data. The statement has
four main objectives: (1) Identifying the name of the graph view to
create, (2) Identifying and extracting the graph’s set of vertexes from
the underlying relational sources, (3) Identifying and extracting
the graph’s set of edges from the underlying relational sources,
and (4) Materializing a native graph data structure in memory
that reflects the graph topology based on adjacency-list structures.
Notice that graph traversal operations can be performed efficiently
over this native graph representation that is linked back to the
corresponding relational data tuples that describe it. Notice further
that the relational source can either be a table or a materialized
relational-view because the graph data attributes for the edges
and/or the vertexes can be constructed from multiple data sources.

Figure 2 illustrates how a graph view is created in GRFusion.
Assume that the data of a social network is stored in the relational
tables as in the figure. Tables Users and Relationships represent the
vertexes and the edges of the social network, respectively. Each ver-
tex or edge has an identifier in the relational tables, and this is the
only required attribute when creating graph views in GRFusion. To
illustrate, consider Listing 1, where the relational sources of Figure 2
are used to create a graph view, namely the SocialNetwork graph
view. A vertex in the SocialNetwork graph has its Id from Users.uld
and has the two attributes IName and birthdate that get their val-
ues from Users.IName and Users.dob, respectively. Similarly, Table
Relationships defines the edges of the SocialNetwork graph, where
the edge Id comes from Relationships.relld, the endpoints come
from Relationships.uld1 and Relationships.uld2, and the two edge
attributes sDate, relative refer to Attributes startDate, isRelative
of Table Relationships, respectively. For the graph view defined by



the Create Graph View statement, if the set of vertexes is V, and the
set of edges is E, then, the endpoints of an edge in E are constrained
to be included in V.

Listing 1: A Social Network Graph View Example

CREATE UNDIRECTED GRAPH VIEW SocialNetwork
VERTEXES (ID = uld, lstName = 1Name,
< birthdate = dob) FROM Users
EDGES (ID = relld, FROM = uldl, TO = uld2,
— sDate = startDate, relative =
< 1isRelative) FROM Relationships

Listing 3 presents a reachability query Q, that queries a protein-
interaction network represented by the BioNetwork graph view,
and checks if Protein X interacts directly (i.e., by an edge) or indi-
rectly (i.e., by a path) with Protein Y through either a covalent or
stable interaction types. PS.PathString corresponds to the string rep-
resentation of Path PS. Notice that many paths can exist between
the vertexes corresponding to the specified proteins. So, Query Q,
uses the LIMIT 1 clause because retrieving one path is sufficient to

decide reachability.
Listing 3: Reachability Query Q,

4 THE PATHS QUERY CONSTRUCT

As graph traversal queries form a massive body of graph queries
(e.g., reachability and shortest path queries [5, 7, 13, 16]), GRFusion
extends the SQL language of VoltDB to declaratively find paths in
graph views. The reason for extending SQL instead of adopting a
graph language (e.g., Cypher [12]) is to allow an arbitrary SQL query
to reference graphs (e.g., join tables with paths as in Figure 4). GR-
Fusion introduces the PATHS construct to query its graph views. For
a graph view, say GV, GRFusion recognizes GV.PATHS in the From
clause of a select statement. Conceptually, this allows GRFusion
to traverse and retrieve paths from GV that satisfy a path criteria
(e.g., predicates on the attributes of the edges forming the path).
In addition to GV.PATHS, GRFusion recognizes GV.VERTEXES, and
GV.EDGES, to reference the vertexes and the edges of GV, respec-
tively. We focus on the GV.PATHS construct as the other constructs
are straightforward.

GRFusion models a path as an ordered list of edges, where each
edge has a start and end vertexes. The attributes of the edges and
the vertexes of a path, say PS, can be indexed and referenced by
relational predicates. Each vertex in Path PS has two additional
integral attributes, namely Fanln and FanOut. Also, Path PS allows
accessing to some path-specific properties, e.g., PS.StartVertexId and
PS.Length refer to the identifier of the start vertex and the length
of Path PS, respectively. To illustrate how paths can be queried in
GRFusion, consider Query Qp in Listing 2. The From clause of Qp,
specifies that the paths are traversed from the SocialNetwork graph
view, where the vertexes relational-source of the SocialNetwork
graph is Relation Users. The query displays the last names of the
friends of friends of all the users with Job = 'Lawyer’. Conceptually,
Qp is evaluated by selecting the sub-graph, say Gy}, containing
edges with start dates after ’1/1/2000’. Using Sub-graph Gy, GR-
Fusion explores paths consisting of two edges that originate from
the vertexes corresponding to lawyers in the social network. Notice
that Listing 2 could use SocialNetwork.VERTEXES instead of Users.
However, Listing 2 uses the Users relation to show how relational
tables can be joined with the paths of a graph view.

Listing 2: Friends-of-Friends Path Query Q,

SELECT PS.PathString

FROM Proteins Pr1, Proteins Pr2, BioNetwork.
< Paths PS

WHERE Pr1.Name = 'Protein X' AND Pr2.Name =
— 'Protein Y' AND PS.StartVertex.Id =
< Pr1.Id AND PS.EndVertex.Id = Pr2.Id
< AND PS.Edges[@..x].Type IN ('covalent
— ', 'stable')

LIMIT 1

SELECT PS.EndVertex.lstName

FROM Users U, SocialNetwork.Paths PS

WHERE U.Job = 'Lawyer' AND PS.StartVertex.Id
< = U.uld AND PS.Length = 2 AND PS.
— Edges[0..*].StartDate > '1/1/2000"

5 QUERY PROCESSING IN GRFUSION

GRFusion defines three operators to evaluate the graph constructs
of graph-relational queries. In particular, GRFusion defines the Ver-
texScan, EdgeScan, and PathScan operators that iterate over a graph
view’s vertexes, edges, and paths, respectively. The PathScan opera-
tor is a lazy operator following the iterator model [8] to avoid eager
generation of paths that might not be required by parent opera-
tors. The reason for this design decision is that many queries (e.g,
reachability) limit the number of retrieved paths, and consequently
generating all/multiple paths may be expensive and unnecessary.

In GRFusion, the PathScan operator is responsible for traversing
a graph view to construct simple paths identified by a graph query.
PathScan is a logical operator that has three physical operators
with three corresponding graph-traversal algorithms. All the phys-
ical operators explore a traversed vertex only once to avoid loops.
In particular, a logical PathScan operator is mapped into DFScan,
BFScan, or SPScan, corresponding to depth-first search, breadth-
first search, or shortest-path search physical operators, respectively.
The mapping is based on a query-hint.

As a logical operation, the paths-discovery process in GRFusion
starts from a set of start vertexes. These start vertexes are either
stated explicitly in the query (e.g., PS.StartVertex.Id = Value) or
are generated by some operators during query evaluation (e.g.,
PS.StartVertex.Id = VS.Id as in Listing 2). In the latter scenario, the
start vertexes selected by some operators (e.g., TableScan, relational
sub-query) are used to probe the PathScan traversal operator, i.e.,
the PathScan operator does not materialize all the paths of the
scanned graph but rather explores the graph, and generates paths
on the fly. Hence, the paths in GRFusion are not eagerly material-
ized by a PathScan operator, rather they are lazily generated. If the
start vertexes of a path selection are not defined, all the vertexes
of the corresponding graph view will be used as starting vertexes.
To illustrate how paths are explored in GRFusion, consider Query
Qp in Listing 2. Qp explicitly states that the path discovery process
starts from the vertexes corresponding to lawyers in the social
network. Figure 4 gives the query evaluation pipeline QEP), that
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Figure 4: GRFusion joins a relational table with a graph-
view PathScan operator for Query Q). The PathScan oper-
ator starts a path-discovery process by being probed by the
start-vertex identifier from the outer table.

evaluates Query Q), where MemGraph refers to the singleton ma-
terialized graph structure of the graph view. In particular, Q, starts
the traversal process from each qualified vertex. Notice that the
qualified vertexes are retrieved using a relational operator (e.g.,
by a TableScan or IndexScan operators) in Figure 4. The reason
is that using a relational access method with filtering predicates
on the vertexes relational-source is more efficient than using the
tuple pointers in the graph view to filter all the vertexes on the
fly. Because of the seamless integration of the relational and graph
models in GRFusion, this optimization alternative is feasible. While
traversing the graph view, only the edges with start dates after
’1/1/2000° are considered. Also, QEP), explores paths of length two
only (i.e., consisting of two edges) that originate from a given start
vertex. As an effective optimization, GRFusion pushes predicates,
e.g., path-length predicates, inside the PathScan operator so that
the predicates are considered during the traversal process. This
optimization allows GRFusion to apply early pruning of paths, and
to reduce the size of the intermediate results flowing through the
query pipeline. Consequently, the performance of the query eval-
uation process is boosted w.r.t. the processing time as well as the
temporary memory used for the intermediate results [9].

6 DEMO SCENARIO

We will demonstrate GRFusion by showing its functionality in defin-
ing and querying directed and undirected graphs inside VoltDB.
We will also show the performance gains due to representing and
processing graphs natively inside a relational engine. In the demon-
stration, we will show the functionality and the performance of
GRFusion using a location-based social network [11], and the Tiger
road-network [3]. The performance gains will be demonstrated by
showing different plans and execution times for the same queries.
In particular, we will compare the performance when evaluating
reachability and shortest path queries using the hybrid query-plans
of GRFusion consisting of relational and graph operators, and we
will compare to using only relational operators.

The audience will interact with GRFusion through a Web in-
terface (Figure 5), where they can issue graph-relational queries
and observe query results and the execution times. The system
will start with a database of relational tables that include tables
with vertexes and edges’ data. The audience will be able to create
and observe directed and undirected graph views initialized from
existing relational tables. Then, the audience will be introduced to
the extended SQL of GRFusion that allows querying graphs (e.g.,
reachability, shortest paths) with relational predicates to filter out
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Figure 5: The Query Web-UI of GRFusion.

vertexes/edges on which the queries are evaluated. Moreover, the
audience will be guided to write graph-relational queries, where
graph views and relational tables are referenced in the same query.
For example, the audience will see how a relational table, say R, can
be joined with a graph operator discovering the paths of a graph,
say G, where the qualified tuples from R are used to probe the
paths of G. We will also demonstrate that the paths of G are never
materialized beforehand, and how a join operator can have a graph
view as the inner operand to start a path discovery process (i.e.,
probing). We will also show the execution plans of the queries that
VoltDB provides and how graph operators and relational operators
seamlessly co-exist in the same query execution pipeline.
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