
Extending In-Memory Relational Database 
Engines with Native Graph Support

Mohamed S. Hassan1 Tatiana Kuznetsova1 Hyun Chai Jeong1

Walid G. Aref1 Mohammad Sadoghi2

1Purdue University – West Lafayette, IN, USA

EDBT’18

2Exploratory Systems Lab (ExpoLab) 
2University of California – Davis, CA, USA



Graphs are Ubiquitous
2

Road Network Biological Network

Datacenter NetworkSocial Network



Specialized Graph Databases
3

¨ Specialized graph databases can handle graph query-workloads
¤ Vital queries include shortest-path and reachability queries



Why Relational Databases for Graph Support?
4

¨ Specialized graph systems are not as mature as RDBMSs
¤ Relational databases are widely-adopted

¨ Graphs and RDBMSs
¤ Relational data can have latent graph structures
¤ Graphs can be represented in terms of relational tables

¨ Graph queries are essential in many applications
¤ Queries can also involve relations

n E.g., for every patient, say P, in selected areas, find the nearest hospital to Patient P

¨ How can an RDBMS effectively and efficiently handle graph query 
workloads?



Graph Support in RDBMSs
5

¨ Why is it challenging?
¤ There is an impedance mismatch between the relational model and the 

graph model

¨ Graph support w.r.t. RDBMSs has two extremes:
¤ Native Relational-Core
¤ Native Graph-Core
¤ Native G+R Core [Proposed]



Native Relational-Core
6

¨ Use a vanilla RDBM
¨ Encode graphs in relational schema
¨ Support limited graph queries
¨ Translate the supported graph queries

into SQL or procedural SQL
¨ E.g., SQLGraph [SIGMOD’15], 

Grail [CIDR’15]
¨ Disadvantages

¤ Several graph queries are inefficient 
to evaluate using pure SQL

¤ Graphs are encoded in complex schema
Relational Database

Relational Data

Relational Queries
(SQL)

Results

Graph Encoded into 
Relational Tables

Graph Queries

SQL Translation Layer



¨ Build on top of an RDBMS
¨ Extract graphs from the RDBMS
¨ Store graphs and process queries 

outside the realm of the RDBMS
¨ E.g., Ringo [SIGMOD’15],

GraphGen [VLDB’15, SIGMOD’17]
¨ Disadvantages

¤ Graph updates require 
re-extracting the graphs

¤ Queries cannot reference any 
non-extracted relational data

Native Graph-Core
7

Relational Database

Relational Data

Graph Extraction 
Queries (SQL)

Graph Extraction and Materialization Engine

Extracted Graphs

Results
Graph Queries



The Relational Model vs. the Graph Model
8

¨ Graph-core approach
¤ +ve: Queries involving graph traversals are efficiently handled in 

the graph model (e.g., shortest paths)
¤ -ve: Not as pervasive and mature as RDBMSs

¨ Relational-core approach 
¤ +ve: Mature and pervasive
¤ -ve: Either many temporary inserts/deletes/updates, or too many 

joins to traverse a graph
n Intermediate-result size and cardinality estimation

¨ Can the best of the two worlds be combined?
¤ Support native graph processing inside an RDBMS



Proposed Approach: Native G+R Core
9

¨ Assume graphs with relational schema
¨ Enable graphs to be defined

as native database objects
¨ Store graphs in non-relational structures

optimized for graph operations
¨ Extend the SQL language

¤ Queries can compose relational and
graph operations

¨ Cross-Data-Model QEPs
¨ Graph updates are supported

Relational Database

Graph Views (Topology 
+ Tuple Pointers)

Relational Data

Graph Construction

⋈

σ GraphOp

π Graph and 
Relational Operators 

in the Same QEP

Graph-Relational Queries (SQL)

Results



¨ We realized the G+R approach in an 
open-source in-memory RDBMS, VoltDB
¤ We refer to the realization as GRFusion

GRFusion: Realizing the G+R Approach
10

In-Memory Relational Database

Declarative Graph-Relational Queries

Graph ViewsRelational Data

Graph-Relational Query Engine

Query Parser

Query Optimizer

Plan Executor



Create Graph View
11

¨ Create-Graph-View statement
¤ Creates a named graph database object that can be referenced in queries
¤ Defines the relational sources of the graph’s vertexes/edges
¤ Martializes the topology of the graph in the main-memory as a singleton 

graph structure



Graph-View of a Social Network
12



Graph-View Structure [Traversal Index]
13



Declarative Graph-Relational Queries
14



The PATHS Construct – Extended SQL
15

¨ Appears in the FROM clause and references a graph view
¤ Select … From MyGraphView.PATHS P

¨ PATHS represents a set of lazy-evaluated paths
¨ A path is a set of consecutive edges, each edge has two endpoint vertexes

¤ E.g., (V:attributes) –(:E:attributes)à(V:attributes) …..

¨ A path is a tuple with the following properties:
¤ Length
¤ StartVertex
¤ EndVertex
¤ Vertexes
¤ Edges



The PathScan Operator
16

¨ PathScan is a logical operator that acts on a graph-view
¤ Has three corresponding physical operators: BFScan, DFScan, SPScan

¨ The output of PathScan is a tuple that extends the standard relational 
tuple
¤ Hence, the output can be ingested by any relational operator

¨ PathScan accepts the id of the vertex to start traversal from
¤ Otherwise, all the vertexes will be considered as start vertexes

¨ Filters can be pushed ahead of PathScan operators
¤ E.g., P.PathLength = 2



Friends-of-Friends Query Example
17

¨ For all the users working as lawyers, retrieve the last name of their 
friends of friends, where the friendships happened after 1/1/2000



QEP of the Friends-of-Friends Query
18



Reachability Query Example
19

¨ Check if Protein X interacts directly (i.e., by an edge) or indirectly (i.e., 
by a path) with Protein Y through either a covalent or a stable interaction 
type.



Shortest-Path Queries with Relational Predicates
20



Evaluating GRFusion
21

¨ Experimental setup
¤ Single node running Linux kernel version 3.17.7

n 32 cores of Intel Xeon 2.90 GHz
n 384 GB of RAM

¤ VoltDB version 6.7

¨ Comparing to
¤ Native Relational-Core: SQLGraph [SIGMOD’15], Grail [CIDR’15]
¤ Specialized graph systems: Neo4j, Titan
¤ Disk-cost is mitigated by running over ram disk



Evaluating GRFusion (Cont’d)
22

¨ Graph queries
¤ Reachability queries (using breadth-first-search)
¤ Reachability queries with filtering predicates
¤ Shortest path queries (using Dijkstra’s algorithm)
¤ Subgraph queries (e.g., count triangles)

¨ Datasets



Constrained-Reachability Queries (String Dataset)
23



SSSP Queries – Tiger Dataset
24



A Note on the Performance Gains of GRFusion
25

¨ Table scan or index scan/seek
¤ Direct pointers are more efficient

¨ Relational joins
¤ Large intermediate results
¤ Inaccurate cardinality estimation

⋈

σ

eTable
T1

σ

eTable
T2

σ

eTable
T3

⋈



Conclusions
26

¨ The G+R approach allows composing relational and graph operations
¤ E.g., by allowing graph-valued functions

¨ GRFusion proposes and realizes how an RDBMS can be extended to 
support graphs as native objects

¨ GRFusion outperforms the state-of-the-art by one to four orders-of-
magnitude query-time speedup

¨ The SQL language of GRFusion allows writing declarative path-queries with 
relational predicates

¨ For relational recursive queries, GRFusion allows an RDBMS to avoid
¤ Large intermediate results
¤ Inaccurate cardinality estimation that may lead to non-optimal join-algorithm 

selection



Thank You!

27



The VERTEXES Construct
28

¨ Appears in the FROM clause and references a graph view
¤ Select … From MyGraphView.VERTEXES v

¨ VERTEXES represents the vertexes of a graph view
¨ A vertex is a tuple with the following properties:

¤ Id
¤ FanIn
¤ FanOut
¤ Property for each vertex attribute



The EDGES Construct
29

¨ Appears in the FROM clause and references a graph view
¤ Select … From MyGraphView.EDGES v

¨ EDGES represents the edges of a graph view
¨ An edge is a tuple with the following properties:

¤ Id
¤ StartVertexId
¤ EndVertexId
¤ Property for each edge attribute



Vertex Query Example
30

¨ Retrige the Birthdate and the number of friends of each user in the 
social network with last name = ‘Smith’


