- \—g

PURDUE Ny

Extending In-Memory Relational Database
Engines with Native Graph Support

EDBT’ I8
Mohamed S. Hassan' Tatiana Kuznetsova' Hyun Chai Jeong!
Walid G. Aref! Mohammad Sadoghi?

2Exploratory Systems Lab (ExpoLab)

1 ' ity —
Purdue University — West Lafayette, IN, USA >University of California — Davis, CA, USA

Graphs are Ubiquitous
.

Road Network Biological Network

I
SN/
11—‘4\. \ f‘l k

Specialized Graph Databases

3]
1 Specialized graph databases can handle graph query-workloads

Vital queries include shortest-path and reachability queries

0,035 8/ v Y gd,
R BRI
TSRO
Ses7 0 A
.. : 7) ‘.
LRI LN
TIITN raphla
GIRAPH

Why Relational Databases for Graph Support?

Specialized graph systems are not as mature as RDBMSs
Relational databases are widely-adopted
Graphs and RDBMSs

Relational data can have latent graph structures

Graphs can be represented in terms of relational tables

Graph queries are essential in many applications

Queries can also involve relations
E.g., for every patient, say P, in selected areas, find the nearest hospital to Patient P

How can an RDBMS effectively and efficiently handle graph query
workloads?

Graph Support in RDBMSs

Why is it challenging?

There is an impedance mismatch between the relational model and the
graph model

Graph support w.r.t. RDBMSs has two extremes:
Native Relational-Core

Native Graph-Core
Native G+R Core [Proposed]

Native Relational-Core

O O O 0O

Use a vanilla RDBM
Encode graphs in relational schema
Support limited graph queries

Translate the supported graph queries
into SQL or procedural SQL

E.g., SQLGraph [SIGMOD’15],
Grail [CIDR’1 5]

Disadvantages

Several graph queries are inefficient
to evaluate using pure SQL

Graphs are encoded in complex schema

Results

Graph Queries

4

\

Relational Queries | SQL Translation Layer

(SQL)

I]

¥

Relational Data Graph Encoded into
Relational Tables
777777 [(FZ7 777
VYrrrrzzrz PZZZZ777

Relational Database

J

Native Graph-Core

Build on top of an RDBMS

Results
Extract graphs from the RDBMS Graph Queries
Store graphs and process queries ﬂ
outside the realm Of the RDBMS Graph Extraction and Materialization Engine
E°g'l Ringo [SIG/V\(DD’.I 5]1 Graph Extraction Extracted Graphs
GraphGen [VLDB’15, SIGMOD’17] Queries (SQL) ﬁ
Disadvantages

Relational Data

Graph updates require P
re-extracting the graphs

Queries cannot reference any
non-extracted relational data

Relational Database

The Relational Model vs. the Graph Model

Graph-core approach

+ve: Queries involving graph traversals are efficiently handled in
the graph model (e.g., shortest paths)

-ve: Not as pervasive and mature as RDBMSs
Relational-core approach
+ve: Mature and pervasive

-ve: Either many temporary inserts/deletes/updates, or too many
joins to traverse a graph

Intermediate-result size and cardinality estimation

Can the best of the two worlds be combined?
Support native graph processing inside an RDBMS

Proposed Approach: Native G+R Core

Assume graphs with relational schema Results
Graph-Relational Queries (SQL)
Enable graphs to be defined
as native database objects m Graph and
. . I Relational Operators
Store graphs in non-relational structures - the Samo QEP
optimized for graph operations 0 GraphOp
R Na
Extend the SQL language Relational Data Graph Views (Topology
+ Tuple Poiniers).
Queries can compose relational and r—— T \"‘7;./
graph operations [—— y, | \
- N
Cross-Data-Model QEPs ”
Graph updates are supported Graph Construction
Relational Database

GRFusion: Realizing the G+R Approach

1 We realized the G+R approach in an
open-source in-memory RDBMS, VoltDB

We refer to the realization as GRFusion

Declarative Graph-Relational Queries

|

-

Query Parser

Query Optimizer

Plan Executor

~

\ Graph-Relational Query Engine /

Relational Data Graph Views

In-Memory Relational Database :

Create Graph View

Create-Graph-View statement
Creates a named graph database object that can be referenced in queries
Defines the relational sources of the graph’s vertexes/edges

Martializes the topology of the graph in the main-memory as a singleton
graph structure

CREATE [DIRECTED | UNDIRECTED] GRAPH VIEW
“— gview_name

VERTEXES (ID = idCol [, { vPropName =
~ vPropCol } [,...n] 1)

FROM relational srcl [where_ _clausel]

EDGES (ID = idCol, FROM = srcVId, TO =
— destSID [, { ePropName = ePropCol } |
— ,...n 1 1)

FROM relational src?2 [where_clause?2]

Graph-View of a Social Network

Users
m fName = Edy. fName = Jones
) IName = Smith IName = Parker
Edy Smith 09-25-1971 dob = 09-25-1971 dob = 11-21-1980
Jones Parker 11-21-1980
Bill Patrick 02-01-1976

edgeld = 1 edgeld = 2
startDate = 01-10-2009 startDate = 12-31-2008
startDate isRelative isRelative = true isRelative = false
1 1 3 01-10-2009 true
2 2 3 12-31-2008 false fName = Bill

IName = Patrick

............ dob = 02-01-1976

CREATE UNDIRECTED GRAPH VIEW SocialNetwork
VERTEXES (ID = uld, lstName = 1Name,
— birthdate = dob)

FROM Users
EDGES (ID = rellId, FROM = uldl, TO = uId2,
< startDate = sDate, relative =

— isRelative)
FROM Relationships

Graph-View Structure [Traversal Index]
B

Materialized Vertexld=1
Graph-View OutEdges = {100, 200}
Topology InEdges = {}
Edgeld = 100 Edgeld = 200
Start=1, End Start=1, End =K

@ 51
g g1
o1
o |
ER |
|
4 N 1 !
Hash-Table | _~ 7 |
4 R \/
(Graph-View N !
o \
N Relational Sources Lo !

oo

Vertexes’ Attributes Edges’ Attributes

Declarative Graph-Relational Queries
N

SELECT <select_list>

[FROM { relational_src | graph_vw |
— graph_vw_vertexes | graph_vw_edges |
~— graph_vw_paths } [,...n]]

[WHERE <search_condition>]

The PATHS Construct — Extended SQL

Appears in the FROM clause and references a graph view
Select ... From MyGraphView.PATHS P

PATHS represents a set of lazy-evaluated paths

A path is a set of consecutive edges, each edge has two endpoint vertexes
E.g., (V:attributes) —=(:E:attributes)=2> (V:attributes)

A path is a tuple with the following properties:
Length
StartVertex
EndVertex
Vertexes

Edges

The PathScan Operator

PathScan is a logical operator that acts on a graph-view

Has three corresponding physical operators: BFScan, DFScan, SPScan

The output of PathScan is a tuple that extends the standard relational
tuple

Hence, the output can be ingested by any relational operator
PathScan accepts the id of the vertex to start traversal from

Otherwise, all the vertexes will be considered as start vertexes

Filters can be pushed ahead of PathScan operators
E.g., P.PathLength = 2

Friends-of-Friends Query Example

o For all the users working as lawyers, retrieve the last name of their
friends of friends, where the friendships happened after 1/1/2000

SELECT PS.EndVertex.lstName

FROM Users U, SocialNetwork.Paths PS

WHERE U.Job = 'Lawyer' AND PS.StartVertex.Id
— = U.uld AND PS.Length = 2 AND PS.
— Edges[0..x].StartDate > '1/1/2000"

QEP of the Friends-of-Friends Query
.

T[endVertex.IstName

|d = StartVertexld

/T~

Tablescan]ob = ‘Lawyer’ PathScanPathLength _2 AND
_____ J_ _ _E;SEaLtDate > ‘1/1/2000’

Vertex | = =-=---- r=-=-- p
Relational
Source

SocialNetwork

Reachability Query Example

11 Check if Protein X interacts directly (i.e., by an edge) or indirectly (i.e.,

by a path) with Protein Y through either a covalent or a stable interaction
type.
SELECT PS.PathString
FROM Proteins Prl, Proteins Pr2, BioNetwork.
— Paths PS
WHERE Prl.Name = 'Protein X' AND Pr2.Name =
— 'Protein Y' AND PS.StartVertex.Id =
— Prl.Id AND PS.EndVertex.Id = Pr2.Id
— AND PS.Edges[0..x].Type IN ('covalent
— ', 'stable')
LIMIT 1

Shortest-Path Queries with Relational Predicates
B 1

SELECT TOP 2 PS

FROM RoadNetwork.Paths PS HINT (SHORTESTPATH (
— Distance)), RoadNetwork.Vertexes Src,
— RoadNetwork.Vertexes Dest

WHERE PS.StartVertex.Id = Src.Id AND PS.
— EndVertex.Id = Dest.Id AND Src.
— Address = "Address 1" AND Dest.
— Address = "Address 2"

Evaluating GRFusion

Experimental setup

Single node running Linux kernel version 3.17.7

32 cores of Intel Xeon 2.90 GHz
384 GB of RAM

VoltDB version 6.7

Comparing to
Native Relational-Core: SQLGraph [SIGMOD’15], Grail [CIDR’15]
Specialized graph systems: Neo4j, Titan

Disk-cost is mitigated by running over ram disk

Evaluating GRFusion (Cont’d)

Graph queries
Reachability queries (using breadth-first-search)
Reachability queries with filtering predicates
Shortest path queries (using Dijkstra’s algorithm)

Subgraph queries (e.g., count triangles)

Datasets
Dataset Number of Vertexes | Number of Edges
Tiger Road Network 24,412,259 58,698,439
DBLP Co-Author Network 1,007,047 6,592,656
String Protein Network 1,520,673 348,473,440
Twitter Follower Network 41,652,230 1,468,365,182

Constrained-Reachability Queries (String Dataset)

23
Constrained-Reachability Queries (String)
-~-GRFusion =SQLGraph -+ Neo4j —-Titan
100000
o
®
£ 10000
Q
£ 1000
|—
c 100
9
‘§ 10 *----- T s s Y ool PP S ¢
<
L 1
0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity (%)

SSSP Queries — Tiger Dataset
.

SSSP Queries (Tiger)
-+-GRFusion -=Grail (In-Memory)

100000

@ = = = = & a8 g—=a
@ N

£ 10000

(<)

£ 1000

-

c 100

9O

I
L 1

0 5 10 15 20 25 30 35 40 45 50
Edge Selectivity (%)

A Note on the Performance Gains of GRFusion
T

1 Materialized Vertexld =1
0 Table scan or index scan/seek Sraph.viow e - 100, 200)
H . o o InEdges = {}
Direct pointers are more efficient | Trolosy
Edgeld = 100 Edgeld = 200

Start=1, End =K

71 Relational joins Start = 1, End = 2

Large intermediate results

Tuple Pointer

Inaccurate cardinality estimation

M’ Graph-View \'\ :
/ \ Relational Sources RN :
0]
< |
/ \ eTable 2 200 N
B e e
le CI7 (O I T B
<Table @ 2000 | P e

Vertexes’ Attributes Edges’ Attributes

T1 T2

Conclusions

The G+R approach allows composing relational and graph operations

E.g., by allowing graph-valued functions

GRFusion proposes and realizes how an RDBMS can be extended to
support graphs as native objects

GRFusion outperforms the state-of-the-art by one to four orders-of-
magnitude query-time speedup
The SQL language of GRFusion allows writing declarative path-queries with
relational predicates
For relational recursive queries, GRFusion allows an RDBMS to avoid

Large intermediate results

Inaccurate cardinality estimation that may lead to non-optimal join-algorithm
selection

Thank Youl

The VERTEXES Construct

Appears in the FROM clause and references a graph view
Select ... From MyGraphView.VERTEXES v

VERTEXES represents the vertexes of a graph view

A vertex is a tuple with the following properties:
Id
Fanin
FanOut

Property for each vertex attribute

The EDGES Construct

Appears in the FROM clause and references a graph view
Select ... From MyGraphView.EDGES v

EDGES represents the edges of a graph view

An edge is a tuple with the following properties:
Id
StartVertexld

EndVertexld
Property for each edge attribute

Vertex Query Example

Retrige the Birthdate and the number of friends of each user in the
social network with last name = ‘Smith’

SELECT VS.birthdate, VS.fanOut
FROM SocialNetwork.Vertexes VS
WHERE VS.1lstName = 'Smith'

T[birthdate, fanOut

O

VertexScan

Vertexes.IstName = ‘Smith’

I
SocialNetwork F— MemGraph !

