
QueCC: A Queue-oriented, Control-free Concurrency
Architecture

Thamir M. Qadah1, Mohammad Sadoghi2

Exploratory Systems Lab
1Purdue University, West Lafayette

2University of California, Davis
tqadah@purdue.edu,msadoghi@ucdavis.edu

ABSTRACT

We investigate a coordination-free approach to transaction pro-

cessing on emerging multi-sockets, many-core, shared-memory

architecture to harness its unprecedented available parallelism.

We propose a queue-oriented, control-free concurrency architecture,

referred to as QueCC, that exhibits minimal contention among con-

current threads by eliminating the overhead of concurrency con-

trol from the critical path of the transaction. QueCC operates on

batches of transactions in two deterministic phases of priority-

based planning followed by control-free execution. We extensively

evaluate our transaction execution architecture and compare its

performance against seven state-of-the-art concurrency control

protocols designed for in-memory stores. We demonstrate that

QueCC can significantly out-perform state-of-the-art concurrency

control protocols under high-contention by up to 6.3×. Moreover,

our results show that QueCC can process nearly 40 million YCSB

transactional operations per second while maintaining serializabil-

ity guarantees with write-intensive workloads. Remarkably, QueCC

out-performs H-Store by up to two orders of magnitude.

CCS CONCEPTS

· Information systems→Data management systems;DBMS

engine architectures; Database transaction processing; Par-

allel and distributed DBMSs; Key-value stores; Main mem-

ory engines;

ACM Reference Format:

Thamir M. Qadah1, Mohammad Sadoghi2. 2018. QueCC: A Queue-oriented,

Control-free Concurrency Architecture. In 19th International Middleware

Conference (Middleware ’18), December 10ś14, 2018, Rennes, France. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3274808.3274810

1 INTRODUCTION

New multi-socket, many-core hardware architectures with tens

or hundreds of cores are becoming commonplace in the market

today [16, 27, 33]. This is a trend that is expected to increase ex-

ponentially, thus, reaching thousands of cores per box in the near

future [17]. However, recent studies have shown that traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware ’18, December 10ś14, 2018, Rennes, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5702-9/18/12. . . $15.00
https://doi.org/10.1145/3274808.3274810

transactional techniques that rely on extensive coordination among

threads fail to scale on these emerging hardware architectures;

thus, there is an urgent need to develop novel techniques to utilize

the power of next generation of highly parallel modern hardware

[26, 28, 39, 44, 45]. There is also a new wave to study deterministic

concurrency techniques, e.g., the read and write sets are known a

priori. These promising algorithms are motivated from the prac-

tical standpoint by examining the predefined stored procedures

that are heavily deployed in customer settings [9, 11, 15, 19, 36, 37].

However, many of the existing deterministic approaches do not

fundamentally redesign their algorithms for themany-core architec-

ture, which is the precise focus on this work, a novel deterministic

concurrency control for modern highly parallel architectures.

The main challenge for transactional processing systems built

on top of many-core hardware is the increased contention (due to

increased parallelism) among many competing cores for shared re-

sources, e.g., failure to acquire highly contended locks (pessimistic)

or failure to validate contented tuples (optimistic). The role of con-

currency control mechanisms in traditional databases is to deter-

mine the interleaving order of operations among concurrent trans-

actions over shared data. But there is no fundamental reason to rely

on concurrency control logic during the actual execution nor it is a

necessity to force the same thread to be responsible for executing

both transaction and concurrency control logic. This important

realization has been observed in recent studies [29, 44] that may

lead to a complete paradigm shift in how we think about transac-

tions, but we have just scratched the surface. It is essential to note

that the two tasks of establishing the order for accessing shared

data and actually executing the transaction's logic are completely

independent. Hence, these tasks can potentially be performed in

different phases of execution by independent threads.

For instance, Ren et al. [29] propose ORTHRUS which operates

based on pessimistic concurrency control, in which transaction

executer threads delegate locking functionality to dedicated lock

manager threads. Yao et al. [44] propose LADS that process batches

of transactions by constructing a set of transaction dependency

graphs and partition them into smaller pieces (e.g., min-cut algo-

rithms) followed by dependency-graph-driven transaction execu-

tion. Both ORTHRUS and LADS rely on explicit message-passing

to communicate among threads, which can introduce an unneces-

sary overhead to transaction execution despite the available shared

memory model of a single machine. In contrast, QueCC embraces

the shared memory model and applies determinism in a two-phase,

priority-based, queue-oriented execution model.

The proposed work in this paper is motivated by a simple pro-

found question: is it possible to have concurrent execution over shared

https://doi.org/10.1145/3274808.3274810
https://doi.org/10.1145/3274808.3274810

data without having any concurrency control? To answer this ques-

tion, we investigate a deterministic approach to transaction pro-

cessing geared towards multi-socket, many-core architectures. In

particular, we propose QueCC, pronounced Quick, a novel queue-

oriented, control-free concurrency architecture that exhibits min-

imal contention during execution and imposes no coordination

among transactions while offering serializable guarantees. The key

intuition behind our QueCC’s design is to eliminate concurrency

control by executing a set of batched transactions in two disjoint

and deterministic phases of planning and execution, namely, decom-

pose transactions into (predetermined) priority queues followed

by priority-queue-oriented execution. In other words, we impose a

deterministic plan of execution on batches of transactions, which

eliminates the need for concurrency control during the actual exe-

cution of transactions.

1.1 Emergence of Deterministic Data Stores

Early proposals for deterministic execution for transaction pro-

cessing aimed at data replication (e.g., [18, 20]). The second wave

of proposals focused on deterministic execution in distributed en-

vironments, and lock-based approaches for concurrency control.

For example, H-Store is exclusively tailored for partitionable work-

loads (e.g. [19]) as it essentially relies on partition-level locks and

runs transactions serially within each partition. Calvin and all of

its derivatives primarily focused on developing a novel distributed

protocol, where essentially all nodes partaking in distributed trans-

actions execute batched transactions on all replicas in a predeter-

mined order known to all. For local in-node concurrency, in Calvin

all locks are acquired (in a pre-determined order to avoid dead-

locks) before a transaction starts and if not all locks are granted,

then the node stalls [37]. In fact, Calvin and QueCC dovetails, the

former sequences transactions pre-execution to essentially (almost)

eliminate agreement protocol while the latter introduces a novel

predetermined prioritization and queue-oriented execution model

to essentially (almost) eliminate the concurrency protocol.

Serializablility Deterministic data stores guarantee serializable

execution of transactions seamlessly. A deterministic transaction

processing engine needs to ensure that (a) the order of conflicting

operations, and (b) the commitment ordering of transactions follow

the same order that is determined prior to execution. With those

two constraints are satisfied by the execution engine, serializable

execution is guaranteed. In fact, from the scheduling point of view,

deterministic data stores are less flexible compared to other serial-

izable approaches [30, 43] because there is only one possible serial

schedule that is produced by the execution engine. However, this

allows the protocol to plan a near-optimal schedule that maximizes

the throughput. Furthermore, given the deterministic execution,

evaluating and testing the concurrency protocol is dramatically sim-

plified because all non-determinism complexity has been eliminated.

The determinism profoundly simplifies the recovery execution, in

fact, normal and recovery routines become identical.

Future of Deterministic In-memory Data Stores Notably,

deterministic data stores have their own advantages and disadvan-

tages that they may not be optimal for every possible workload [30].

For instance, it is an open question how to support transactions

that demands multiple rounds of back-and-forth client-server com-

munication or how to support the traditional cursor-based accesses.

Clients must register stored procedures in advance and supply all

input parameters at run-time, i.e., the read-set and the write-set

of a transaction must be known prior to execution, and the use

of non-deterministic functions, e.g., currentTime(), is non-trivial.

Notably, there have been several lightweight solutions to efficiently

determining read/write (when not known as a priori) through a

passive, pre-play execution model [9, 11, 15, 19, 36, 37].

1.2 Contributions

In this paper, we make the following contributions:

• we present a rich formalism to model our re-thinking of how

transactions are processed inQueCC. Our formalism does not

suffer from the traditional data dependency conflicts among

transactions because they are seamlessly eliminated by our

execution model (Section 2).

• we propose an efficient deterministic, queue-oriented trans-

action execution model for highly parallel architectures, that

is amenable to efficient pipelining and offers a flexible and

adaptable thread-to-queue assignment to minimize coordi-

nation (Section 3).

• we design a novel two-phase, priority-based, queue-oriented

planning and execution model that eliminates the need for

concurrency control (Section 4).

• we prototype our proposed concurrency architecture within

ExpoDB [13, 14], a comprehensive concurrency control testbed,

which includes eight modern concurrency techniques, to

demonstrate QueCC effectiveness compared to state-of-the-

art approaches based on well-established benchmarks such

as TPC-C and YCSB (Section 5).

2 FORMALISM

Before describing the design and architecture of QueCC, we first

present data and transaction models used by QueCC.

2.1 Data Model

The data model used is the widely adopted key-value storage model.

In this model, each record in the database is logically defined as a

pair (k,v), where k uniquely identifies a record and v is the value

of that record. Internally, we access records by knowing its physical

record identifiers (RID), i.e., the physical address in either memory

or disk.

Operations are modeled as two fundamental types of operations;

namely, READ and WRITE operations. However, there are other kinds

of operations such as INSERT, UPDATE, and DELETE. Those opera-

tions are treated as different forms of the WRITE operation[1].

2.2 Transaction Model

Transactions can be modeled as a DAG (Directed Acyclic Graphs)

of łsub-transactionsž called transaction fragments. Each fragment

performs a sequence of operations on a set of records (each inter-

nally associated with a RID). In addition to the operations, each

fragment is associated with a set of constraints that captures the

application integrity. We formally define transaction fragments as

follows:

2

Definition 1. (Transaction fragments):

A transaction fragment fi is defined as a pair (Sop ,C), where Sop
is a finite sequence of operations either READ or WRITE on records

identified with RIDs that are mapped to the same contiguous RID

range, and C is a finite set of constraints that must be satisfied post

the fragment execution.

Fragments that belong to the same transaction can have two

kinds of dependencies, and such dependencies are based on the

transaction’s logic. We refer to them as logic-induced dependencies,

and they are of two types: (1) data dependencies and (2) commit

dependencies [10]. Because these logic-induced dependencies may

also exist among transaction fragments that belong to the same

transaction, we call them intra-transaction dependencies to differen-

tiate them from inter-transaction dependencies that exist between

fragments that belong to different transactions. Inter-transaction

dependencies are induced by the transaction execution model. Thus,

they are also called execution-induced dependencies.

An intra-transaction data dependency between fragment fi , and

another fragment fj such that fj is data-dependent on fi implies

that fj requires some data that is computed by fi . To illustrate,

consider a transaction that reads a value vi of a particular record,

say, ri and updates the value vj of another record, say, r j such that

vj = vi +1. This transaction can be decomposed into two fragments

fi , and fj with a data dependency between fi and fj such that fj
depends on fi . We formalize the notion of intra-transaction data

dependencies as follows:

Definition 2. (Intra-transaction data dependency):

An intra-transaction data dependency exist between two transaction

fragments fi and fj , denoted as fi
d
→ fj , if and only if both frag-

ments belong to the same transaction and the logic of fj requires data

computed by the logic of fi .

The second type of logic-induced dependency is called an intra-

transaction commit dependency. This kind of dependency captures

the atomicity of a transaction when some of its fragments may

abort due to logic-induced aborts. We refer to such fragments as

abortable fragments. Logic-induced aborts are the result of violating

integrity constraints defined by applications, which are captured by

the set of constraintsC for each fragment. Intuitively, if a fragment

is associated with at least one constraint that may not be satisfied

post the execution of the fragment, then it is abortable.

A formal definition of abortable fragments is as follows:

Definition 3. (Abortable transaction fragments):

A transaction fragment fi is abortable if and only if fi .C , ϕ.

Using the definition of abortable fragments, intra-transaction

commit dependencies are formally defined as follows:

Definition 4. (Intra-transaction commit dependency):

An intra-transaction commit dependency exist between two trans-

action fragments fi and fj , denoted as fi
c
→ fj , if and only if both

fragments belong to the same transaction and fi is abortable.

The notion of transaction fragments is similar in spirit to the

notion of pieces [10, 34, 41], the notion of actions in DORA[28],

and the notion of record actions in LADS [44]. However, unlike

those notions, we impose a RID-range restriction on records (i.e.,

partitioned data) accessed by fragments and formally model the set

of constraints associated with fragments.

Now, we can formally define transactions based on the fragments

and their dependencies, as follows:

Definition 5. (Transactions):

A transaction ti is defined as a directed acyclic graph (DAG)Gti :=

(Vti ,Eti), whereVti is finite set of transaction fragments { f1, f2, . . . , fk },

and Eti = {(fp , fq)| fp
d
→ fq ∨ fp

c
→ fq }

InQueCC, there is a third type of dependencies that may exist be-

tween transaction fragments of different transactions, which are in-

duced by the execution model. Therefore, they are called execution-

induced dependencies. Since we are modeling transactions at the

level of fragments, we capture them at that level. However, they

are called łcommit dependenciesž in [25] when not considering the

notion of transaction fragments. They are the result of speculative

reading of uncommitted records [31]. We formally define them as

follows:

Definition 6. (Inter-transaction commit dependency):

An inter-transaction commit dependency exist between two transac-

tion fragments fi and fj is denoted as fi
s
→ fj , if and only if both

fragments belong to different transactions and fj speculatively reads

uncommitted data written by fi

Note that inter-transaction commit dependencies may cause

cascading aborts among transactions. This problem can bemitigated

by exploiting the idea of łearly write visibilityž, which is proposed

by Faleiro et al.[10].

Also, note that execution-induced data dependencies among

transactions, used to model conflicts in traditional concurrency

control mechanisms, are no longer possible inQueCC because these

conflicts are seamlessly resolved and eliminated by the determin-

istic, priority-based, queue-oriented execution model of QueCC.

Non-deterministic data stores that rely on traditional concurrency

control mechanisms, suffer from non-deterministic aborts caused

by their execution model that employs non-deterministic concur-

rency control. A notable observation is that deterministic stores

eliminate non-deterministic aborts, which improves the efficiency

of the transaction processing engine.

3 PRIORITY-BASED, QUEUE-ORIENTED
TRANSACTION PROCESSING

We first offer a high-level description of our transaction processing

architecture. Our proposed architecture (depicted in Figure 1) is

geared towards a throughput-optimized in-memory stores.

Transaction batches are processed in two deterministic phases.

First, in the planning phase, multiple planner threads (2) con-

sume transactions from their respective client transaction queue

(1) in parallel and create prioritized execution queues (3). Each

planner thread is assigned a predetermined distinct priority. The

idea of priority is essential to the design of QueCC and it has two

advantages. First, it allows planner threads to independently and

in parallel perform their planning task. By assigning the priority

to the execution queue, the ordering of transactions planned by

different planner threads is preserved. Secondly, the priory enables

3

Client	

Transaction	

Queues

Main-Memory	

DB	Storage

Planning	Threads

High	Priority	

Queues

Low	Priority	

Queues

Execution	Threads

Priority	

Groups

Execution	

Queues

Index	lookups

Index

Direct	

record	

access

1

2 3

4 5

Figure 1: Overview of Priority-based, Queue-oriented Architecture

execution threads to decide the order of executing fragments, which

leads to correct serializable execution.

The planner thread acts as a local sequencer with a predeter-

mined priority for its assigned transactions and spreads operations

of each transaction (e.g., reads and writes) into a set of queues based

on the sequence order.

Each queue is defined over a disjoint set of records, and queues

inherit their planner distinct priorities. The goal of the planner

is to distribute operations (e.g., READ/WRITE) into a set of almost

equal-sized queues. Queues for each planner can be merged or split

arbitrarily to satisfy balanced size queues. However, queues across

planners can only be combined together following the strict priority

order of each planner. We introduce execution-priority invariance,

which is defined as follows:

Definition 7. (Execution-priority Invariance):

For each record, operations that belong to higher priority queues

(created by a higher priority planner) must always be executed before

executing any lower priority operations.

The execution-priority invariance is the essence of how we cap-

ture determinism in QueCC. Since all planners operate at different

priorities, then they can be plan independently in parallel without

any contention.

The execution queues (3) are handed over to a set of execution

threads (4) based on their priorities. An execution thread can

arbitrarily select any outstanding queues within a batch and exe-

cute its operations without any coordination with others executors.

The only criterion that must be satisfied is the execution-priority in-

variance, implying that if a lower priority queue overlaps with any

higher priority queues (i.e., containing overlapping records), then

before executing a lower priority queue, the operations in all higher

priority queues must be executed first. Depending on the number

of operations per transaction and its access patterns, independent

operations from a single transaction may be processed in parallel

by multiple execution threads without any synchronization among

the executors; hence, coordination-free and independent execution

across transactions. Execution threads operate directly on the in-

memory store (5). Once all the execution queues are processed,

it signals the completion of the batch, and transactions in the batch

are committed except those that violated an integrity constraint.

The violations are identified by executing a set of commit threads

once each batch is completed.

To ensure recoverability, all parameters required to recreate the

execution queues are persisted at the end of the planning phase.

A second persistent operation is done at the end of the execution

phase once the batch is fully processed; which is similar to the

group commit technique [7].

3.1 Proof of serializability

In this section, we show thatQueCC produces serializable execution

histories. We use c(Ti) to denote the commit ordering of transaction

Ti , and e(fi j) to denote the completion time for the execution of

fragment fi j , where fi j belongs toTi . For the sake of this proof, we

use the notion of conflicting fragments to have the same meaning as

conflicting operations in serializability theory [42]. Without loss of

generality, we assume that each fragment accesses a single record,

but the same argument applies in general because of the RID range

restriction (see Definition 1).

Theorem 1. The transaction execution history produced byQueCC

is serializable.

Proof. Suppose that the execution of two transactions Ti and

Tj is not serial, and their commit ordering is c(Ti) < c(Tj). Note

that their commitment ordering is the same as their ordering when

they were planned. Therefore, there exist two conflicting fragments

fip and fjq such that e(fjq) > e(fip). Because fip and fjq access

the same record, we have the following cases: (Case 1) if Ti and Tj
are planned by the same planner thread, they must be placed in the

same execution queue (EQ). Since the commitment ordering is the

same as the order they were planned, the planner must have placed

fip ahead of fjq in the execution queue which contradicts the con-

flicting order. (Case 2) if Ti and Tj are planned by different planner

threads, their respective fragments are placed in two different EQs

with the EQ containing fip having a higher priority than the other

EQ containing fjq . Having e(fjq) > e(fip) implies that the priority

execution invariance is violated, which is also a contradiction. □

4

4 CONTROL-FREE ARCHITECTURAL
DESIGN

In this section, we present planning and execution techniques in-

troduced by QueCC.

4.1 Deterministic Planning Phase

In the planning phase, our aim is to answer the key questions:

how to efficiently produce execution plans and distribute them across

execution threads in a balanced manner? How to efficiently deliver

the plans to execution threads?

A planner thread consumes transactions from its dedicated client

transaction queue , which eliminates contention from using a single

client transaction queue. Since each planner thread has its own pre-

determined priority, at this point, transactions are partially ordered

based the planners’ priorities. Each planner can independently

determine the order within its own partition of the batch. The set

of execution queues (EQs) filled by planners inherit their planner’s

priority thus forming a priority group (PG) of EQs (3 . To represent

priority inheritance of EQs, we associate all EQs planned by a

planner with a priority group (PG). Each batch is organized into

priority groups of EQs with each group inheriting the priority of

its planner. We formally define the notion of a priority group as

follows:

Definition 8. (Priority Group):

Given a set of transactions in a batch, T = {t1, t2, . . . , tn }, and a

set of planner threads {pt1,pt2,ptk }, the planning phase will

produce a set of k priority groups {pд1,pд2, . . .pдk }, where each pдi
is a partition of T and is produced by planner thread pti .

InQueCC, EQs are the main data structure used to represents the

workload of transaction fragments. Planners fill EQs with transac-

tion fragments augmented with some additional meta-data during

the planning and assign EQs to execution threads on batch delivery.

EQs are recycled across batches, and they are dynamically expanded

to hold transaction fragments beyond their initial capacity. Planners

may physically split or logically merge EQs in order to balance the

load given to execution queues. Splitting EQs is costly because it

requires copying transaction fragments from one queue to two new

queues that resulted from the split. The cost of allocating memory

for EQs is minimized by maintaining a thread-local pool of EQs,

which allows recycling EQs after batch commitment.

We now focus on how each planner produces the priority-based

EQs associated with its PG. Our planning technique is based on

RID value ranges.

Range-based Planning In our range-based planning approach,

each planner starts by partitioning the whole RID space into a

number of ranges equal to the number of execution threads1. For

example, if we have 4 execution threads, then we will initially have

4 range partitions of the whole RID space. Based on the number

of transactions accessing each range, that range can be further

partitioned progressively into smaller ranges to ensure that they

can be assigned to execution threads in a balanced manner (i.e.,

each execution thread will have the same number of transaction

fragments to process). Note that each range is associated with an

EQ, and partitioning a range implies splitting their associated EQs

1The range partitioning can be learned, adapted, and tuned across batches

as well. Range partitioning from earlier batches is reused for future

ones, which amortize the cost of range partitioning across multiple

batches, and reduces the planning time for the subsequent batches.

A range needs to be partitioned if its associated EQ is full. In

QueCC, we have an adaptable system configuration parameter that

controls the capacity of EQs. When EQs become full during plan-

ning, they are split into additional queues. The split algorithm is

simple. Given an EQ to split, a planner partitions its associated

range in half. Each range split will be associated with a new EQ

obtained from a local thread pool of preallocated EQs2. Based on the

new ranges, planners copy transaction fragments from the original

EQ into the two new EQs.

A planner needs to determine when a batch is ready. Batches

can be considered complete based on time (i.e., complete a batch

every 5 milliseconds) or based on counts (i.e., complete a batch

every 1000 transaction). The choice of how batches are determined

is orthogonal to our techniques. However, in our implementation,

we use count-based batches with the batch size being a configurable

system parameter. Using count-based batches allows us to easily

study the impact of batching. For count-based batches, a planner

thread can easily compute the number of transactions in its partition

of the batch since the number of planners and the batch size, are

known parameters. Once the batch is planned and ready, it can be

delivered to execution threads for execution.

Operation Planning Planning READ and UPDATE operations

are straightforward, but special handling is needed for planning

INSERT operations. When planning a READ or an UPDATE operation,

a planner will simply do an index lookup to find the RID value for

the record and its pointer. Based on the RID value, it determines

the EQ responsible for the transaction fragment. It will check if

the EQ is full and perform a split if needed. Finally, it inserts the

transaction fragment into the EQ. DELETE operations are handled

the same way as UPDATE operations from planning perspective. For

the INSERT operations, a planner assigns a new RID value to the

new record and places the fragment into the respective EQ.

4.2 Deterministic Execution Phase

Once the batch is delivered, execution threads start processing

transaction fragments from assigned EQs without any need for

controlling its access to records. Fragments are executed in the same

order they are planned within a single EQ. Execution threads try to

execute the whole EQ before moving to the next EQ. The execution

threads may encounter a transaction fragment that has an intra-

transaction data dependency to another fragment that resides in

another EQ. Data dependencies exist when intermediate values are

required to execute the fragment in hand. Once the intermediate

values are computed by the corresponding fragments, they are

stored in the transaction’s meta-data accessible by all transaction

fragments. Data dependencies may trigger EQ switching before

the whole EQ is consumed. In particular, an EQ switch occurs

if intermediate values required by the fragment in hand are not

available.

To illustrate, consider the example transaction from Section 2,

which has the following logic: fi = {a = read(ki)}, fj = {b =

a+1;write(kj ,b)}, where keys are denoted as ki . In this transaction,

2If the pool is empty, a new EQ is dynamically allocated.

5

we have a data dependency between the two transaction fragments.

The WRITE operation on kj cannot be performed until the READ

operation on ki is completed. Suppose that fi and fj are placed in

two separate EQs, e.g., EQ1 and EQ2 respectively. An attempt to

execute fi before fj can happen, which triggers an EQ switch by

the attempting execution thread. Note that, this delaying behavior3

is unavoidable because there is no way for fj to complete without

the completion of fi . This mechanism of EQ switching ensures that

the execution thread only waits if data dependencies associated

with transaction fragments at the head of all EQs are not satisfied.

Our EQ switch mechanism is very lightweight and requires only a

single private counter per EQ to keep track of how many fragments

of the EQ are consumed.

Execution Priority Invariance Each execution thread (ET) is

assigned one or more EQ in each PG. ETs can execute fragments

from multiple PGs. Since EQs are planned independently by each

planner, the following degenerate case may occur. Consider two

planner threads, say, PT0 and PT1 with their respective PGs (i.e.,

PG0 and PG1), and two execution threads ET0 and ET1. A total of

four EQs are planned in the batch. Each EQ is denoted as EQi j

such that i refers to the planner thread index and j refers to the

execution thread index, according to the assignment. For example,

EQ00 is assigned by PT0 to ET0, and so forth. Therefore, we have the

following set of EQs: EQ00,EQ01,EQ10, and EQ11. Now for each

EQ, there is an associated RID range ri j , and the indices of the

ranges correspond to planner and execution threads, respectively.

A violation of the execution priority invariance occurs under the

following conditions: (1) ET0 start executing EQ10; (2) ET1 has not

completed the execution of EQ01; (3) a fragment in EQ01 updates a

record, while a fragment in EQ10 reads the same record (this implies

that r10 overlaps with r01). Therefore, to ensure the invariance, an

executor checks that all overlapped EQs from higher priority PGs

have completed their processing. If so, it proceeds with the execu-

tion of the EQ in hand, otherwise, it switches to another EQ. Fully

processing all planned EQs in a batch signifies that all transactions

are executed, and execution threads can start the commit stage for

the whole batch. Notably, at any point during the execution, the

executor thread may act as commit thread, by checking commit

dependencies of fully executed transactions as described next.

Commit Dependency Tracking When processing a transac-

tion, execution threads need to track inter-transaction commit de-

pendencies. When a transaction fragment speculatively reads un-

committed data written by a fragment that belongs to another

transaction in the batch, a commit dependency is formed between

the two transactions. This dependency must be checked during

commitment (or as soon as all prior transactions are fully executed)

to ensure that the earlier transaction has committed. If the earlier

transaction is aborted, the later transaction must abort. This depen-

dency information is stored in the transaction context. To capture

such dependencies, QueCC uses a similar approach to the approach

used in [25, 31] for dealing with commit dependencies.QueCCmain-

tains the transaction id of the last transaction that updated a record

in per-record meta-data. During execution, the transaction ID is

checked and if it refers to a transaction that belongs to the current

3Notably, although further processing of a queue maybe delayed, the executor is not
blocked and may simply begin processing another queue.

Batch	

bi+1

BatchQueue

PT1

PT0
ET1ET0

Planning	

threads

Execution	threads

Batch	

bi

Figure 2: Example of concurrent batch planning and execu-

tion with 4 worker threads (2 planner threads + 2 execution

threads). Priority groups are color-coded by planners. Execu-

tion threads process transactions from both priority groups.

batch, a commit dependency counter for the current transaction

is incremented and a pointer to the current transaction’s context

is added to the context of the other transaction. During the com-

mit stage, when a transaction is committing, the counters for all

dependent transactions is decremented. When the commit depen-

dency counter is equal to zero, the transaction is allowed to commit.

Once all execution threads are done with their assigned work, the

batch goes through a commit stage. This can be done in parallel by

multiple threads.

4.3 QueCC Implementation Details

Plan Delivery After each planner, completes its batch partition

and construct its PG, it needs to be delivered to the execution

layer so that execution threads can start executing transactions. In

QueCC, we use a simple lock-free delivery mechanism using atomic

operations. We utilize a shared data structure called BatchQueue,

which is basically a circular buffer that contains slots for each batch.

Each batch slot contains pointers to partitions of priority groups

which are set in a latch-free manner using atomic CAS operations.

Priority group partitions are assigned to execution threads. Figure 2,

illustrates an example of concurrent batch planning and execution

of batch bi+1 and bi respectively. In this example, planner threads

denoted as PT0 and PT1 are planning their respective priority groups

for batch bi+1; and concurrently, execution threads ET0 and ET1 are

executing EQs from the previously planned batch (i.e., batch bi).

Delivering priority group partitions to the execution layer must

be efficient and lightweight. For this reason,QueCC uses a latch-free

mechanism for delivery. The mechanism goes as follows. Execution

threads spin on priority group partition slots while they are not

set (i.e., their values is zero). Once the priority groups are ready to

be delivered, planner threads merge EQs into priority group parti-

tions such that the workload is balanced, and each priority group

partition is assigned to one execution thread. EQs can be assigned

dynamically by adapting to the workload or deterministically. To

achieve balanced workload among execution threads, we have a

simple greedy algorithm that keeps track of how many transaction

6

fragments are assigned to each execution thread. It iterates over

the remaining unassigned EQs until all EQs are assigned. In each

iteration, it assigns an EQ to the worker with the lowest load.

Once a planner is done with creating execution threads assign-

ments, it uses atomic CAS operations to set the values of the slots

in the BatchQueue to point to the list of assigned EQs for each

execution thread, which constitutes the priority group partition

assigned to the respective execution thread.

Planning and Execution phases can be pipelinedin QueCC. In

the pipelined design, execution threads are either processing EQs

or waiting for their slots to be set by planner threads. As soon as

the slot is set, execution threads can start processing EQs from

the newly planned batch. On the other hand, for the un-pipelined

design, worker threads acting as planner threads, will synchro-

nize at the end of the planning phase. Once the synchronization is

completed, worker threads will act as execution threads and start

executing EQs.

Note that in QueCC, regardless of the number of planner threads

and execution threads, there is zero contention with respect to the

BatchQueue data structure.

RID Management Our planning is based on record identifiers

(RIDs). RIDs can be physical or logical depending on the storage

architecture being row-oriented or column-oriented. Typically, in

row-oriented storage, physical RIDs are used. While in column-

oriented storage, logical RIDs are used. As opposed to traditional

disk-oriented data stores, where RIDs are typically physical and is

composed of the disk page identifier and the record offset, main-

memory stores typically uses memory pointers as physical RIDs. On

the other hand, logical RIDs are independent of the storage layout.

Therefore, they can facilitate planning tasks since planners are

dynamically creating logical partitions of the database by planning

EQs. Logical RIDs leads to performance improvements when a set of

independently accessed records are re-clustered logically regardless

of their physical clustering. In QueCC, we use logical RIDs from

a single space of 64-bit integers and are stored alongside index

entries.

4.4 Discussion

QueCC supports łspeculative write visibilityž (SWV) when execut-

ing transaction fragments because it defers commitment to the

end of the batch and allows reading uncommitted data written

within a batch. In general, transaction fragments that may abort

can cause cascading aborts. To ensure recoverability, QueCC main-

tains an undo buffer per transaction, which is populated by the

before-image of records (or fields) being updated. A transaction

can abort only if at least one of its fragments is abortable and have

exercised its abort action.

If a transaction aborts, the original values are recovered from

the undo buffers. This approach makes conservative assumptions

about the abortability of transaction fragments (i.e., it assumes that

all transaction fragments can abort). The overhead of maintain-

ing undo-buffers can be eliminated if the transaction fragment is

guaranteed to commit (i.e., it does not depend on other fragments).

We can maintain information on the abortability of a transaction

fragment in its respective transaction meta-data. Thus, instead of

performing populating the undo buffers łblindlyž, we can check the

Table 1: YCSB Workload configurations. Notes: default val-

ues are in parenthesis; in partitioned stores, it reflects the

number of partitions; batch size parameters are applicable

only to QueCC; multi-partition transaction parameter is ap-

plicable only to the partitioned stores.

Parameter Name Parameter Values

of worker threads 4, 8, 16, 24, (32)

Zipfian’s theta 0.0, 0.4, 0.8, 0.9, (0.99)

% of write operations 0%, 5%, 20%, (50%), 80%, 95%

Rec. sizes 50B, (100B), 200B, 400B, 800B, 1KB, 2KB

Operations per txn 1, 10, (16), 20, 32

Batch sizes 1K , 4K , (10K), 20K , 40K , 80K

% of multi-partition txns. 1%, 5%, 10%, 20%, 50%, 80%, 100%

possibility of an abort by looking at the transaction context, and

skip the copying to undo buffers if the transaction is guaranteed to

commit (i.e., passed its commit point[10]).

However, QueCC is not limited to only SWV and can support

multiple write visibility policies. Faleiro et al. [10] introduced a new

write visibility policy called łearly write visibilityž (EWV), which

can improve the throughput of transaction processing by allowing

reads on records only if their respective writes are guaranteed to

be committed with serializability guarantees. Unlike SWV, which

is prone to cascading aborts, EWV is not. In fact, both EWV and

SWV can be used at the same time by QueCC. A special token is

placed ahead of the original fragment to make ETs adhere to the

EWV policy. If that special token is not placed, then ETs will follow

SWV course. One major advantage of using EWV in the context of

QueCC is eliminating the process of backing-up copies of records

in the undo-buffers. Since the transaction that updated record is

guaranteed to commit, there will be no potential rollback and the

undo-action is unnecessary.

5 EXPERIMENTAL ANALYSIS

We have evaluated the QueCC protocol in our ExpoDB platform [13,

14]. ExpoDB is an in-memory, distributed transactional framework

that not only offers a testbed to study concurrency and agreement

protocols but also has a secure transactional capability to study

distributed ledgerÐblockchain [13, 14]. ExpoDB’s comprehensive

concurrency testbed includes a variant of two-phase locking [8]

(i.e., NO-WAIT [3] as a representative of pessimistic concurrency

control), TicToc [46], Cicada [26], SILO [39], FOEDUS with MOCC

[22, 40], ERMIA with SSI and SSN [21], and H-Store [19], all of which

were compared against QueCC.

5.1 Experimental Setup

We run all of our experiments using a Microsoft Azure G5 VM

instance. This VM is equipped with an Intel Xeon CPU E5-2698B v3

running at 2GHz, and has 32 cores. The memory hierarchy includes

a 32KB L1 data cache, 32KB L2 instruction cache, 256KB L2 cache,

40MB L3 cache, and 448GB of RAM. The operating system is Ubuntu

16.04.3 LTS (xenial). The codebase is compiled with GCC version

5.4.0 and −O3 compiler optimization flag.

The workloads are generated at the server before any transac-

tion is processed, and are stored in main-memory buffers. This is

7

Table 2: TPC-C Workload configurations, default values are

in parenthesis

Parameter Name Parameter Values

of worker threads 4, 8, 16, 24, (32)

% of payment txns. 0%, 50%, 100%

done to remove any effects of the network, and allows us to study

concurrency control protocols under high stress.

Every experiment starts with a warm-up period where mea-

surements are not collected; followed by a measured period. Each

experiment is run three times, and the average value is reported in

the results of this section.

We focus on evaluating three metrics: throughput, latency, and

abort percentage. The abort percentage is computed as the ratio

between the total number of aborted transaction to the sum of

the total number of attempted transaction (i.e., both aborted and

committed transactions).

5.2 Workloads Overview

We have experimented with both YCSB and TPC-C benchmarks.

Below, we briefly discuss the workloads used in our evaluation.

YCSB[5] is a web-application benchmark that is representative of

web applications used by YAHOO.While the original workload does

not have any transaction semantics, ours is adapted to have trans-

actional capability by including multiple operations per transaction.

Each operation can be either a READ or a READ-MODIFY-WRITE op-

eration. The ratio of READ to WRITE operations can also vary. The

benchmark consists of a single table. The table in our experiments

contains 16 million records. Table 1 summarizes the various config-

uration parameters used in our evaluation, and default values are

in parenthesis. The data access patterns can be controlled using the

parameter θ of the Zipfian distribution. For example, a workload

with uniform access has θ = 0.0, while a skewed workload has a

larger value of theta e.g., θ = 0.99.

TPC-C [38] is the industry standard benchmark for evaluating

transaction processing systems. It basically simulates a wholesale

order processing system. Each warehouse is considered to be a

single partition. There are 9 tables and 5 transaction types for this

benchmark. The data store is partitioned by warehouse, which is

considered the best possible partitioning scheme for the TPC-C

workload [6]. Similar to previous studies in the literature[15, 45], we

focus on the two main transaction profiles (NewOrder and Payment)

out of the five profiles, which correspond to 88% of the default TPC-

C workload mix [38]. These two profiles are also the most complex

ones. For example, the NewOrder transaction performs 2 READ op-

erations, 6 − 16 READ-MODIFY-WRITE operations, 7 − 16 INSERT

operations, and about 15% of these operations can access a remote

partition. The Payment transaction, on the other hand, performs 3

READ-MODIFY-WRITE operations, and 1 INSERT operation. One of

the reads uses the last name of the customer, which requires a little

more work to look up the record.

In this paper, we primarily study high-contention workloads

because when there is limited or no contention, then, generally,

the top approaches behave comparably with negligible differences.

This choice also has an important practical significance [22, 25, 26,

1 2 4 5 8 10 20 40 80
Batch Sizes (K transactions)

1.00

1.50

2.00

2.50

T
h
ro

u
g
h
p
u
t

(M
 t

x
n
/s

e
c) QUECC

(a) Throughput

1 2 4 5 8 10 20 40 80
Batch Sizes (K transactions)

1.0

1.5

2.0

2.5

3.0

3.5

La
te

n
cy

 (
M

ill
is

e
co

n
d
s)

QUECC-AVG-Lat

(b) Latency

Figure 3: Varying batch sizes and high data access skew (θ =

0.99)

4 8 16 24 32
Number of worker threads

0

25

50

75

100100

R
u
n
 T

im
e
 %

(n
o
rm

a
liz

e
d
)

Other unmeasured times

Batch Planning time

Batch exec time

Batch Commit time

Sync after commit stage

Figure 4: Time breakdown when varying number of worker

threads.

39, 46] because real workloads are often skewed, thus, exhibiting a

high contention. Therefore, in the interest of space, we present our

detailed results for high-contention workloads and briefly overview

the results for lower-contention scenarios.

5.3 YCSB Experiments

Using YCSB workloads, we start by evaluating the performance

of QueCC with different batch sizes, which is a unique aspect of

QueCC. Subsequently, we compare QueCC with other concurrency

control protocols.

Effect of Batch Sizes We gear our experiments to study the

effect of batch sizes on throughput and latency for QueCC because

it is the only approach that uses batching. We use a write-intensive

workload, 32 worker threads, a record size of 100 bytes, Zipfian’s

θ = 0.99, and 16 operations per transaction.

We observe that QueCC exhibit low average latency (i.e., under

3ms) for batches smaller than 20K transactions Figure 3b, which

is considered reasonable for many applications. For the remaining

experiments, we use a batch of size 10K .

TimeBreakdown Figure 4 illustrates the time breakdown spent

on each phase ofQueCC under highly skewed data accesses. Notably,

QueCC continues to achieve high-utilization even under extreme

contention model. For example, even scaling to 32 worker threads,

over the 80% of the time is dedicated to useful work, i.e., planning

and execution phases.

Effect of Data Access Skew We evaluate the effect of varying

record contention using Zipfian’s θ parameter of the YCSB work-

load while keeping the number of worker threads constant. We use

32 worker threads and assign one to each available core. Figure

5a, shows the throughput results of QueCC compared with other

concurrency control protocols. We use a write-intensive workload

8

0.0 0.4 0.8 0.9 0.99
Zipfian Theta

0.5

1.0

1.5

2.0

2.5

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 T

P
S
)

(a) Throughput

0.0 0.4 0.8 0.9 0.99
Zipfian Theta

0
10
20
30
40
50
60
70
80

A
b
o
rt

 %
(b) Abort Percentage

Figure 5: Variable contention (θ) on write-intensive YCSB

workload

4 8 16 24 32
Worker Threads

0.5

1.0

1.5

2.0

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 T

P
S
)

(a) Throughput

4 8 16 24 32
Worker Threads

0
10
20
30
40
50
60
70
80

A
b
o
rt

 %

(b) Abort percentage

Figure 6: Scaling Worker Threads Under Write Intensive

Workload. High contention, θ = 0.99

which has 50% READ-MODIFY-WRITE operations per transaction. As

expected QueCC performs comparably with the best competing

approaches under low contention scenarios θ <= 0.8. Remarkably,

in high contention scenarios, QueCC begins to significantly outper-

forms all the state-of-the-art approaches. QueCC improves the next

best approach by 3.3×with θ = 0.99, and has 35% better throughput

with θ = 0.9. The main reason for QueCC’s high-throughput is that

it eliminates concurrency control induced aborts completely. On

the other hand, the other approaches suffer from excessive trans-

action aborts which lead to wasted computations and complete

stalls for lock-based approaches. This experiments also highlights

the stability and predictability of QueCC with respect to degree of

contention.

Scalability We evaluate the scalability of QueCC by varying

the number of worker threads while maintaining a skewed, write-

intensive access pattern. We observe that all other approaches

scale poorly under highly concurrent access scenario (6a) despite

employing techniques to reduce the cost of contention (e.g., Cicada).

In contrast, QueCC scales well despite the higher contention due to

increased number of threads. For instance, QueCC achieves nearly

3× the throughput of Cicada with 32 worker threads.

This result demonstrates the effectiveness of QueCC’s concur-

rency architecture that exploits the untapped parallelism available

in transactional workloads. Figure 6b shows that the abort rate

for Cicada, TicToc, and ERMIA as parallelism increases. This high

abort-rate behavior is caused by the large number of worker threads

competing to read and modify a small set of records (cf. Figure 6).

Unlike QueCC, any non-deterministic scheduling and concurrency

0 5 20 50 80 95

% of Write operations

 1

 2

 3

 4

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 T

P
S
)

(a) Throughput

0 5 20 50 80 95
% of Write operations

0
10
20
30
40
50
60
70
80

A
b
o
rt

 %

(b) Abort percentage

Figure 7: Results for varying the percentage of write opera-

tions in each transaction. High contention, θ = 0.99

10 20 40 100 200 400 1000 2000

Record Size (Bytes)

0.5

1.0

1.5

2.0

2.5

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 T

P
S
)

(a) Throughput

10 20 40 100 200 400 1000 2000

Record Size (Bytes)

0
10
20
30
40
50
60
70
80

A
b
o
rt

 %

(b) Abort Percentage

Figure 8: Results for varying the size of records under high

contention, θ = 0.99.

control protocols will be a subject to significant and amplified abort

rates when the number of conflicting operations by competing

threads increases.

Effect of Write Operation Percentage Another factor that

contributes to contention is the percentage of write operations.

With read-only workloads, concurrency control protocols exhibit

limited contention even if the data access is skewed. However, as

the number of conflicting write operations on records increases,

the contention naturally increases, e.g., exclusive locks need to be

acquired for NO-WAIT, more failed validations for SILO and Cicada,

and in general, any approach relying on the optimistic assumption

that conflicts are rare will suffer. SinceQueCC does not perform any

concurrency control during execution, no contention arise from

the write operations.

In addition to increased contention, write operations translates

into increased size of undo logging for recovery. This is an added

cost for any in-place update approach andQueCC is no exception. As

we increase the write percentage, more records are backed up in the

undo-buffers log and, thus, negatively impacts the overall system

throughput. Of course, using a multi-version storage model (e.g.,

[31]) and avoiding in-place updates, the undo-buffer overhead can

be mitigated. Nevertheless, QueCC significantly outperforms other

concurrency control protocols by up to 4.5× under write-intensive

workloads, i.e., once the write percentage exceeds 50%.

Effect of Record Sizes Having larger record sizes may also

negatively affect the performance of logging component as shown

in Figure 8. Since the undo log maintains a copy of every modified

record, the logging throughput suffers when large records are used.

9

1 10 16 20 32
Number of operations per transaction

 5
 10
 15
 20
 25
 30
 35

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 r

e
c.

 p
e
r

se
c.

)

(a) Throughput

1 10 16 20 32
Number of operations per transaction

0

20

40

60

80

A
b
o
rt

 %

(b) Abort percentage

Figure 9: Results for varying the number of operations in

each transaction. High contention, θ = 0.99

(a) Throughput

0 1 5 10 20 50 80 100
% of Multi-partition transactions

0

20

40

60

Ab
or

t %

HSTORE
QUECC

(b) Abort percentage

Figure 10: Results of multi-partition transactions with com-

parison to H-Store.

One approach to handle the logging is to exploit the notion

of łabortabityž of the transaction last updated the record, and re-

purpose the key principle of EWV[10].4 Even under logging pres-

sure that begins to become one of the dominant factor when the

records size reaches 2KB, QueCC continues to maintains its superi-

ority and outperform Cicada by factor of 3× despite the contention

regulation mechanism employed by Cicada.

Effect of Transaction Size So far, each transaction contains

a total of 16 operations. Now we evaluate the effect of varying

the number of operations per transaction, essentially the depth

of a transaction. Figure 9 shows the results of having 1, 10, 16, 20,

and 32 operations per transaction under high data skew. For these

experiments, we report the throughput in terms of the number

of operations completed or records accessed per second. For all

concurrency control protocols, the throughput is lowest when there

is only a single operation per transaction, which indicates that

the work for ensuring transactional semantics is becoming the

bottleneck.

More interestingly, when increasing the transaction depth, the

probability of conflicting access is also increased; thereby, higher

contention and higher abort rates. In contrast, under higher con-

tention,QueCC continues to have zero percent abort rates. It further

benefits from improved cache-locality and yields higher through-

put because a smaller subset of records is handled by the same

worker thread.QueCC further exploits intra-transaction parallelism

and altogether improves up to 2.7× over the next best performing

protocol (Cicada) when increasing the transaction depth.

4Similarly inQueCC, we check if all fragments of the last writer transaction has been
executed successfully, if so, we avoid writing to the undo buffers, and we further avoid
adding the commit dependency.

Comparison to Partitioned Stores QueCC is not sensitive to

multi-partition transactions despite its per-queue, single-threaded

execution model, which is one of its key distinction. To establish

QueCC’s resilience to non-partition workloads, we devise an exper-

iment in which we vary the degree of multi-partition transactions.

Figure 10 illustrates that QueCC throughput virtually remains the

same regardless of the percentage of multi-partition transactions.

We observed thatQueCC improves over H-Store by factor 4.26× even

when there is only 1% multi-partition transactions in the workload.

Remarkably, with 100% multi-partition transactions, QueCC im-

proves on H-Store by two orders of magnitude. H-Store is limited to a

thread-to-transaction assignment and resolves conflicting access at

the partition level. For multi-partition transactions, H-Store is forced

to lock each partition accessed by a transaction prior to starting

its execution. If the partition-level locks cannot be acquired, the

transaction is aborted and restarted after some randomized delay.

The H-Store coarse-grained partition locks offer an elegant model

when assuming partition-able workload, but it noticeably limits

concurrency when this assumption no longer holds.

5.4 TPC-C Experiments

In this section, we studyQueCC using the industry standard TPC-C.

Our experiments in this section focus on throughput and abort

percentage under high contention with three different workload

mixes.

From a data access skew point of view, the TPC-C benchmark

is inherently skewed towards warehouse records because both

Payment and NewOrder transactions access the warehouse table.

The scale factor for TPC-C is the number of warehouses, but it also

determines the data access skew. As we increase the number of

warehouses, we get less data access skew (assuming a fixed number

of transactions in the generated workload). Therefore, to induce

high contention in TPC-C, we limit the number of warehouses

to 1 in the workload and use all the 32 cores for processing the

workload.

Figure 11 captures the throughput and the abort percentage.

With a workload mix of 100% Payment transactions, Figure 11c,

QueCC performs 6.34× better than the other approaches. With the

a 50% Payment transaction mix, QueCC improves by nearly 2.7×

over FOEDUS with MOCC. Despite the skewness towards the single

warehouse record (where every transaction in the workload would

accesses it), QueCC can process fragments accessing other tables in

parallel because it distributes them among multiple queues, and as-

sign those queues to different threads. In addition, QueCC performs

no spurious aborts which contributes its high performance.

6 RELATED WORK

There have been extensive research on concurrency control ap-

proaches, and there many excellent publications dedicated to this

topic (e.g., [2, 12, 23, 35]). However, research interest in concur-

rency control in the past decade has been revived due to emerging

hardware trends, e.g., mutli-core and large main-memory machines.

We will cover key approaches in this section.

Novel Transaction Processing Architectures Arguably one

of the first paper that started to question the status quo for con-

currency mechanism was H-Store [19]. H-Store imagined a simple

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Throughput (Million TPS)

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(a) Throughput - 100% NewOrder

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Throughput (Million TPS)

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(b) Throughput - 50% NewOrder + 50% Payment

0 1 2 3 4 5 6
Throughput (Million TPS)

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(c) Throughput - 100% Payment

0 20 40 60 80 100
Abort Percentage

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(d) Abort Percentage - 100% NewOrder

0 20 40 60 80 100
Abort Percentage

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(e) Abort Percentage - 50% NewOrder + 50% Payment

0 20 40 60 80 100
Abort Percentage

ERMIA-SI_SSN
FOEDUS-MOCC

CICADA
NO_WAIT

QUECC
SILO

TICTOC

(f) Abort Percentage - 100% Payment

Figure 11: Results for 32 worker threads for TPC-C benchmark. Number of warehouses = 1.

model, where the workload always tends to be partitionable and ad-

vocated single-threaded execution in each partition; thereby, drop

the need for any coordination mechanism within a single partition.

Of course, as expected its performance degrades when transactions

span multiple partitions.

Unlike H-Store, QueCC through a deterministic, priority-based

planning and execution model that not only eliminates the need for

concurrency mechanism, but also it is not limited to partitionable

workloads and can swiftly readjust and reassign thread-to-queue

assignment or merge/spit queues during the planning and/or exe-

cution, where queue is essentially an ordered set of operations over

a fine-grained partition that is created dynamically.

Unlike the classical execution model, in which each transac-

tion is assigned to a single thread, DORA [28] proposed a novel

reformulation of transactions processing as a loosely-coupled pub-

lish/subscribe paradigm, decomposes each transaction through a

set of rendezvous points, and relies on message passing for thread

communications. DORA assigns a thread to a set of records based

on how the primary key index is traversed, often a b-tree index,

where essentially the tree divided into a set of contiguous disjoint

ranges, and each range is assigned to a thread. The goal of DORA

is to improve cache efficiency using thread-to-data assignment

as opposed to thread-to-transaction assignment. However, DORA

continues to rely on classical concurrency controls to coordinate

data access while QueCC is fundamentally different by completely

eliminating the need for any concurrency control through deter-

ministic planning and execution for a batch of transactions. Notably,

QueCC’s thread-to-queue assignment also substantially improve

cache locality.

Concurrency Control Protocols The well-understood pes-

simistic two-phase locking schemes for transactional concurrency

control on single-node systems are shown to have scalability prob-

lems with large numbers of cores[45]. Therefore, several research

proposals focused on the optimistic concurrency control (OCC) ap-

proach (e.g., [31, 32, 39, 40, 46, 47]), which is originally proposed

by [24]. Tu et al.’s SILO [39] is a scalable variant of optimistic con-

currency control that avoids many bottlenecks of the centralized

techniques by an efficient implementation of the validation phase.

TicToc [46] improves concurrency by using a data-driven times-

tamp management protocol. Both BCC [47] and MOCC [40] are

designed to minimize the cost of false aborts. All of these CC proto-

cols suffer from non-deterministic aborts, which results in wasting

computing resources and reducing the overall system’s throughput.

On the other hand, QueCC does not have such limitation because

it deterministically processes transactions, which eliminates non-

deterministic aborts.

Larson et al. [25] revisited concurrency control for in-memory

stores and proposed a multi-version, optimistic concurrency con-

trol with speculative reads. Sadoghi et al. [31, 32] introduced a

two-version concurrency control that allows the coexistence of

both pessimistic and optimistic concurrency protocols, all centered

around a novel indirection layer that serves as a gateway to find

the latest version of the record and a lightweight coordination

mechanism to implement block and non-blocking concurrency

mechanism. Cicada by Lim et al. mitigates the costs associated with

multi-versioning and contention by carefully examining various

layers of the system [26]. QueCC is in sharp contrast with these re-

search efforts,QueCC focuses on eliminates the concurrency control

overhead as opposed to improving it.

ORTHRUS by Ren et al. [29] uses dedicated threads for pessimistic

concurrency control and message passing communication between

threads. Transaction execution threads delegate their locking func-

tionality to dedicated concurrency control threads. In contrast to

ORTHRUS, QueCC plans a batch of transactions in the first phase

and execute them in the second phase using coordination-free

mechanism. LADS by Yao et al. [44] builds dependency graphs for

a batch of transactions that dictates execution orders. Faleiro et

al. [10] propose PWV which is based on the łearly write visibilityž

technique that exploits the ability to determine the commit deci-

sion of a transaction before it completes all of its operations. In

terms of execution, both LADS and PWV process transactions explic-

itly by relying on dependency graphs. On the other hand, QueCC

does satisfy transaction dependencies but its execution model is

organized in term of prioritized queues. In QueCC, not only do we

drop the partitionability assumption, but we also eliminate any

graph-driven coordination by introducing a novel deterministic,

priority-based queuing execution. Notably, the idea of łearly write

visibilityž can be exploited by QueCC to further reduce chances of

cascading aborts.

11

The ability to parallelize transaction processing is limited by

various dependencies that may exist among transactions fragments.

IC3 [41] is a recent proposal for a concurrency control optimized

for multi-core in-memory stores. IC3 decomposes transactions into

pieces through static analysis, and constrain the parallel execution

of pieces at run-time to ensure serializable.

Unlike IC3,QueCC achieves transaction-level parallelism by using

two deterministic phases of planning and execution and without

relying on conflict graphs explicitly.

Deterministic TransactionProcessingAll the aforementioned

single-version transaction processing schemes interleave transac-

tion operations non-deterministically, which leads to fundamentally

unnecessary aborts and transaction restarts. Deterministic transac-

tion processing, e.g.,[9, 37]) on the other hand, eliminates this class

of non-deterministic aborts and allow only logic-induced aborts

(i.e., explicit aborts by the transaction’s logic). Calvin[37] is designed

for distributed environments and uses determinism eliminate the

cost of two-phase-commit protocol when processing distributed

transactions and does not address multi-core optimizations in the

individual nodes. Gargamel [4] pre-serilaize possibly conflicting

transactions using a dedicated load-balancing node in distributed

environments. It uses a classifier based on static analysis to deter-

mine conflicting transactions. Unlike Gargamel, QueCC is centered

around the notion of priority, and is designed for multi-core hard-

ware.

BOHM [9] started re-thinking multi-version concurrency control

for deterministic multi-core in-memory stores. In particular, BOHM

process batches of transactions in three sequential phases (1) a

single-threaded sequencing phase to determine the global order

of transactions, (2) a parallel multi-version concurrency control

phase to determine the version conflicts, and (3) a parallel execu-

tion phase based on transaction dependencies, which optionally

performs garbage collection for unneeded record versions. In sharp

contrast, QueCC process batches of transactions in only two deter-

ministic phases, and it has a parallel priority-based queue-oriented

planning and execution phases that do not suffer from additional

costs such as garbage collection costs.

7 CONCLUSION

In this paper, we presented QueCC, a queue-oriented, control-free

concurrency architecture for high-performance, in-memory data

stores on emerging multi-sockets, many-core, shared-memory ar-

chitectures. QueCC exhibits minimal contention among concurrent

threads by eliminating the overhead of concurrency control from

the critical path of the transaction. QueCC operates on batches of

transactions in two deterministic phases of priority-based plan-

ning followed by control-free execution. Instead of the traditional

thread-to-transaction assignment, QueCC uses a novel thread-to-

queue assignment to dynamically parallelize transaction execution

and eliminate bottlenecks under high contention workloads. We ex-

tensively evaluateQueCCwith two popular benchmarks. Our results

show thatQueCC can process almost 40Million YCSB operation per

second and over 5 Million TPC-C transactions per second. Com-

pared to other concurrency control approaches, QueCC achieves up

to 4.5× higher throughput for YCSB workloads, and 6.3× higher

throughput for TPC-C workloads.

REFERENCES
[1] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions. In

Proc. ICDE. 67ś78. DOI:https://doi.org/10.1109/ICDE.2000.839388
[2] Arthur J. Bernstein, David S. Gerstl, and Philip M. Lewis. 1999. Concurrency

Control for Step-decomposed Transactions. Inf. Syst. 24, 9 (Dec. 1999), 673ś698.
http://portal.acm.org/citation.cfm?id=337922

[3] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (June 1981), 185ś221. DOI:
https://doi.org/10.1145/356842.356846

[4] P. Cincilla, S. Monnet, and M. Shapiro. 2012. Gargamel: Boosting DBMS Per-
formance by Parallelising Write Transactions. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems. 572ś579.

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc. SoCC.
ACM, 143ś154. DOI:https://doi.org/10.1145/1807128.1807152

[6] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-driven Approach to Database Replication and Partitioning. Proc. VLDB
Endow. 3, 1-2 (Sept. 2010), 48ś57. DOI:https://doi.org/10.14778/1920841.1920853

[7] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R.
Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main
Memory Database Systems. In Proc. SIGMOD. ACM, 1ś8. DOI:https://doi.org/10.
1145/602259.602261

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of
Consistency and Predicate Locks in a Database System. Commun. ACM 19, 11
(Nov. 1976), 624ś633. DOI:https://doi.org/10.1145/360363.360369

[9] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. Proc. VLDB Endow. 8, 11 (July 2015), 1190ś1201. DOI:

https://doi.org/10.14778/2809974.2809981
[10] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High Perfor-

mance Transactions via Early Write Visibility. Proc. VLDB Endow. 10, 5 (Jan. 2017),
613ś624. DOI:https://doi.org/10.14778/3055540.3055553

[11] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy Evaluation
of Transactions in Database Systems. In Proc. SIGMOD. ACM, 15ś26. DOI:https:
//doi.org/10.1145/2588555.2610529

[12] Jana Giceva and Mohammad Sadoghi. 2018. Hybrid OLTP and OLAP. In
Encyclopedia of Big Data Technologies, Sherif Sakr and Albert Zomaya (Eds.).
Springer International Publishing, Cham, 1ś8. DOI:https://doi.org/10.1007/
978-3-319-63962-8_179-1

[13] Suyash Gupta and Mohammad Sadoghi. 2018. Blockchain Transaction Processing.
In Encyclopedia of Big Data Technologies, Sherif Sakr and Albert Zomaya (Eds.).
Springer International Publishing, Cham, 1ś11. DOI:https://doi.org/10.1007/
978-3-319-63962-8_333-1

[14] Suyash Gupta and Mohammad Sadoghi. 2018. EasyCommit: A Non-blocking
Two-phase Commit Protocol. In Proceedings of the 21th International Conference
on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018.
157ś168. DOI:https://doi.org/10.5441/002/edbt.2018.15

[15] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow. 10, 5 (Jan.
2017), 553ś564. DOI:https://doi.org/10.14778/3055540.3055548

[16] Hewlett Packard Enterprise. 2017. HPE Superdome Servers. https://www.hpe.
com/us/en/servers/superdome.html. (2017).

[17] Hewlett Packard Labs. 2017. The Machine: A new kind of computer. http:
//labs.hpe.com/research/themachine. (2017).

[18] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo. 2000. Deterministic sched-
uling for transactional multithreaded replicas. In Proc. IEEE SRDS. 164ś173. DOI:
https://doi.org/10.1109/RELDI.2000.885404

[19] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: A High-performance,
Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (Aug. 2008), 1496ś1499. DOI:https://doi.org/10.14778/1454159.1454211

[20] Bettina Kemme and Gustavo Alonso. 2000. Don’T Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication. In Proc. VLDB.
Morgan Kaufmann Publishers Inc., 134ś143. http://dl.acm.org/citation.cfm?id=
645926.671855

[21] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In Proceedings of the 2016 International Conference on Management of Data (SIG-
MOD ’16). ACM, New York, NY, USA, 1675ś1687. DOI:https://doi.org/10.1145/
2882903.2882905

[22] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). ACM, New York, NY, USA, 691ś706. DOI:https://doi.org/
10.1145/2723372.2746480

[23] Vijay Kumar (Ed.). 1995. Performance of Concurrency Control Mechanisms in
Centralized Database Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

12

https://doi.org/10.1109/ICDE.2000.839388
http://portal.acm.org/citation.cfm?id=337922
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/602259.602261
https://doi.org/10.1145/360363.360369
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.1007/978-3-319-63962-8_179-1
https://doi.org/10.1007/978-3-319-63962-8_179-1
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.1007/978-3-319-63962-8_333-1
https://doi.org/10.5441/002/edbt.2018.15
https://doi.org/10.14778/3055540.3055548
https://www.hpe.com/us/en/servers/superdome.html
https://www.hpe.com/us/en/servers/superdome.html
http://labs.hpe.com/research/themachine
http://labs.hpe.com/research/themachine
https://doi.org/10.1109/RELDI.2000.885404
https://doi.org/10.14778/1454159.1454211
http://dl.acm.org/citation.cfm?id=645926.671855
http://dl.acm.org/citation.cfm?id=645926.671855
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/2723372.2746480
https://doi.org/10.1145/2723372.2746480

[24] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst. 6, 2 (June 1981), 213ś226. DOI:https://doi.
org/10.1145/319566.319567

[25] Per A. Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel,
and Mike Zwilling. 2011. High-performance Concurrency Control Mechanisms
for Main-memory Databases. Proc. VLDB Endow. 5, 4 (Dec. 2011), 298ś309. DOI:
https://doi.org/10.14778/2095686.2095689

[26] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: De-
pendably Fast Multi-Core In-Memory Transactions. In Proc. SIGMOD. ACM,
21ś35. DOI:https://doi.org/10.1145/3035918.3064015

[27] Mellanox Technologies. 2017. Multicore Processors Overview. http://www.
mellanox.com/page/multi_core_overview. (2017).

[28] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki.
2010. Data-oriented Transaction Execution. Proc. VLDB Endow. 3, 1-2 (Sept. 2010),
928ś939. DOI:https://doi.org/10.14778/1920841.1920959

[29] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. 2016. Design Principles for Scaling
Multi-core OLTP Under High Contention. In Proc. SIGMOD. ACM, 1583ś1598.
DOI:https://doi.org/10.1145/2882903.2882958

[30] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2014. An Evaluation of the
Advantages and Disadvantages of Deterministic Database Systems. Proc. VLDB
Endow. 7, 10 (June 2014), 821ś832. DOI:https://doi.org/10.14778/2732951.2732955

[31] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and
Mustafa Canim. 2018. L-Store: A Real-time OLTP and OLAP System. In Proceed-
ings of the 21th International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018. 540ś551. DOI:https://doi.org/10.5441/
002/edbt.2018.65

[32] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel,
and Kenneth A. Ross. 2014. Reducing Database Locking Contention Through
Multi-version Concurrency. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1331ś1342.
DOI:https://doi.org/10.14778/2733004.2733006

[33] Sgi. 2017. SGI UV 3000 and SGI UV 30. https://www.sgi.com/products/servers/
uv/uv_3000_30.html. (2017).

[34] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-
action Chopping: Algorithms and Performance Studies. ACM Trans. Database
Syst. 20, 3 (Sept. 1995), 325ś363. DOI:https://doi.org/10.1145/211414.211427

[35] Alexander Thomasian. 1998. Concurrency Control: Methods, Performance, and
Analysis. ACM Comput. Surv. 30, 1 (March 1998), 70ś119. DOI:https://doi.org/10.
1145/274440.274443

[36] Alexander Thomson and Daniel J. Abadi. 2015. CalvinFS: Consistent WAN
Replication and Scalable Metadata Management for Distributed File Systems. In
Proc. FAST. USENIX Association, 1ś14. http://portal.acm.org/citation.cfm?id=
2750483

[37] Alexander Thomson, Thaddeus Diamond, Shu C. Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proc. SIGMOD. ACM, 1ś12. DOI:https://doi.org/10.1145/
2213836.2213838

[38] TPCC. TPC-C, On-line Transaction Processing Benchmark. (????). http://www.
tpc.org/tpcc/.

[39] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In SOSP. ACM,
18ś32. DOI:https://doi.org/10.1145/2517349.2522713

[40] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-optimistic Concurrency
Control for Highly Contended Dynamic Workloads on a Thousand Cores. Proc.
VLDB Endow. 10, 2 (Oct. 2016), 49ś60. DOI:https://doi.org/10.14778/3015274.
3015276

[41] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling Multicore Databases via Constrained Parallel Execution. In Proc. SIGMOD.
ACM, 1643ś1658. DOI:https://doi.org/10.1145/2882903.2882934

[42] Gerhard Weikum and Gottfried Vossen. 2001. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[43] Arthur T. Whitney, Dennis Shasha, and Stevan Apter. 1997. High Volume Trans-
action Processing without Concurrency Control, Two Phase Commit, Sql or C++.
In HPTS.

[44] C. Yao, D. Agrawal, G. Chen, Q. Lin, B. C. Ooi, W. F. Wong, and M. Zhang. 2016.
Exploiting Single-ThreadedModel in Multi-Core In-Memory Systems. IEEE TKDE
28, 10 (2016), 2635ś2650. DOI:https://doi.org/10.1109/TKDE.2016.2578319

[45] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proc. VLDB Endow. 8, 3 (Nov. 2014), 209ś220. DOI:
https://doi.org/10.14778/2735508.2735511

[46] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proc. SIGMOD. ACM, 1629ś
1642. DOI:https://doi.org/10.1145/2882903.2882935

[47] Yuan Yuan, KaiboWang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros Blanas, and
Xiaodong Zhang. 2016. BCC: Reducing False Aborts in Optimistic Concurrency
Control with Low Cost for In-memory Databases. Proc. VLDB Endow. 9, 6 (Jan.
2016), 504ś515. DOI:https://doi.org/10.14778/2904121.2904126

13

https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.14778/2095686.2095689
https://doi.org/10.1145/3035918.3064015
http://www.mellanox.com/page/multi_core_overview
http://www.mellanox.com/page/multi_core_overview
https://doi.org/10.14778/1920841.1920959
https://doi.org/10.1145/2882903.2882958
https://doi.org/10.14778/2732951.2732955
https://doi.org/10.5441/002/edbt.2018.65
https://doi.org/10.5441/002/edbt.2018.65
https://doi.org/10.14778/2733004.2733006
https://www.sgi.com/products/servers/uv/uv_3000_30.html
https://www.sgi.com/products/servers/uv/uv_3000_30.html
https://doi.org/10.1145/211414.211427
https://doi.org/10.1145/274440.274443
https://doi.org/10.1145/274440.274443
http://portal.acm.org/citation.cfm?id=2750483
http://portal.acm.org/citation.cfm?id=2750483
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.14778/3015274.3015276
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1109/TKDE.2016.2578319
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.14778/2904121.2904126

	Abstract
	1 Introduction
	1.1 Emergence of Deterministic Data Stores
	1.2 Contributions

	2 Formalism
	2.1 Data Model
	2.2 Transaction Model

	3 Priority-based, Queue-oriented Transaction Processing
	3.1 Proof of serializability

	4 Control-free Architectural Design
	4.1 Deterministic Planning Phase
	4.2 Deterministic Execution Phase
	4.3 QueCC Implementation Details
	4.4 Discussion

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Workloads Overview
	5.3 YCSB Experiments
	5.4 TPC-C Experiments

	6 Related Work
	7 Conclusion
	References

