Dissecting BFT Consensus:
In Trusted Components we Trust!

| ‘* =
“‘ > =

Suyash Gupta Sajjad Rahnama Shubham Pandey Natacha Crooks Mohammad Sadoghi
UC Berkeley ExpoLab ExpoLab UC Berkeley Expolab
UC Davis UC Davis UC Davis

BQI‘leey UC DAVIS @ResilientDB

UNIVERSITY OF CALIFORNIA

Why Should this Talk Interest you?

Bad News

Trusted Hardware
cannot be used
to efficiently reduce replication

factor of BFT protocols to 2f+1.

Good News

Trusted Hardware
can be used
to design more efficient and

scalable 3f+1 BFT protocols.

Replicated State Machine

=

Replicated State Machine

 Safety & Consistent log of operations.
 Liveness = Replicas should make progress.

* Responsiveness = Client should receive response.

Byzantine Fault Tolerant RSM

n replicas & at most f byzantine 2 n >=3£f+1

Run Byzantine Fault Tolerant (BFT) Consensus

Byzantine Fault Tolerance Consensus

< Transaction .
A
Alice

Result [Non-Equivocation Phase]

Request 1s prepared

[Persistence Phase]

Request is committed

Execution Phase]

Non-Equivocation

Create a Prepare Quorum:
No two prepare quorums can exist for

different transactions at the same sequence number.

Every quorum needs to intersect in at least one honest replica.

Persistence

If a new leader is elected,
RSM should ensure that

previously committed requests persist.

Execution

Client needs f+1 matching responses.
Ensures execution by one honest replica.

Proof of request commitment not sufficient.

The Ugly Side of BFT

\.

Crash Fault Tolerant
Systems

2f+1 replicas

A a

_/ \

Byzantine Fault Tolerant

Systems

3f+1 replicas

\

_/

Equivocation is root cause of

higher replication factor

10

Maybe Trusted Hardware Can help?

O Keystone e

Trusted Byzantine Fault-Tolerance Consensus

Trusted component attest order of each transaction.

Replicas cannot equivocate.

A2M, TrInc, MinBFT, MinZZ, CheapBFT, Hotstuff-M, Damysus

Trust-BFT protocols = 2f+1 enough for safety

12

Trust-Byzantine Fault Tolerance Consensus

g T ransaction

—— J n =2f+1 replicas

A
Alice

Result [Non-Equivocation Phase]

Request 1s prepared

[Persistence Phase]

Request is committed

Execution Phase]

13

Trust-Byzantine Fault Tolerance Consensus

ws Transaction
1«:;1

A ’
Alice

Result [f+1 replicas vote prepare.]

Request 1s prepared

[f+1 replicas vote commit]

Request is committed

Any replica that
commits, executes.

14

So Are We Done?”?

Unfortunately No!

15

Hidden Pitfalls with Trust-BFT Protocols

» Algorithmic Pitfall

» Limited Responsiveness
» Loss of Safety under Rollbacks
» Lack of Parallelism

» Measurement Pitfall

» Instead of focusing on reducing replication = Focus on increasing Throughput per Machine.

16

Homnest replica

sends Result

Limited Responsiveness

<« Transaction
5 =J Quorum Size = f+1 =2

\i/ Ull
Alice
Request 1s prepared

7"?‘ .]

Request 1s committed

Honest replica that
commits, executes.

17

Alice Stuck!

Alice needs f+1 = 2 matching responses.

Alice receives only 1 response.

18

No progress for Alice

Lack of Parallelism

» Every message sent requires an attestation bound to specific sequence number.
» Replicas cannot run consensus on two transactions in parallel!

» We show that despite 2f+1 replicas, Trusted-BFT protocols are slower than BFT.

20

Loss of Safety under Rollbacks

» Trusted Enclaves can be rollbacked!

» On enclave rollback, safety cannot be guaranteed.

» Possible Solution? Make use of TPMs or persistent counters!

» Too slow = 180ms per access.
» Very few writes = TPMs allow at most 1 million writes.

» Trust-BFT protocols require O(n) accesses per consensus phase.

21

Solution =2
FlexiTrust Protocols

» A novel suite of protocols.

» Guarantee both liveness and responsiveness.

» Require access to trusted component only once per consensus.

» Employing TPMs to avoid enclave rollbacks is now much less expensive!

Magical Ingredients behind
FlexiTrust Protocols

» Switch back to replication factor 3f+1.

» Larger Quorums guarantee responsiveness.

» Trusted hardware accessed only by the primary before sending proposal.

» Guarantees non-equivocation.

» Permits replicas to participate in multiple consensus invocations in parallel.

» Helps to reduce phases and communication.

23

Flexi-ZZ Protocol!

Alice

i ® A

Replica (R1) -@ \\\//
Replica (R2) @ \&/

\&4)

00 o <’

<754 Replica (R3) @

Client Pre-Prepare Reply
Request

Single phase, Linear, Handles f failures, Only needs Trusted counters. 2

Evaluation on ResilientDB*

S‘I ResilientDB 2

*https://resilientdb.com/

https://resilientdb.com/

Throughput per Machine

Replicas (in f) | Total Replicas (in n) Protocols
FLEXI-ZZ | MINZZ | FLEXI-ZZ | MINZZ
4 13 9 15813 12431
8 25 17 7570 5329
16 49 33 2462 20338
24 73 49 1341 1002
32 97 63 334 640

» MinZZ -> Single phase like FlexiZZ but n >= 2f+1.

» For these experiments, we deployed up to 80k clients.

Scalability

—e— PBFT-EA = wmiiﬁ{+ MINZZ]—@— OPBFT-EA[—o— FLEXI-BFT FLEx1-ZZ}—-— PBFT

200K
)
g
I 160K
a 120K
&
2 80K
E e
= 40K | e

O |
4 8 16 24 32
Number of Replicas (in f)

Number of replicas (f=8)
N =17 = PBFT-EA, MinBFT, MinZZ, OPBFT-EA

N =25 - PBFT, FlexiBFT, FlexiZZ

— o
./'95'5 Yo

27

» Conclusions:

= Simply reducing replication will not yield higher throughput.
= Existing Trust-BFT protocols limit responsiveness and scalability.

= FlexiTrust protocols advocate meaningful application of BFT consensus.

» Reach me:

= Twitter: suyash_sg

= Email: suyash.gupta@berkeley.edu

= Web: https://gupta-suyash.github.io/

gj ResilientDB

mailto:suyash.gupta@berkeley.edu
https://gupta-suyash.github.io/

