Dissecting BFT Consensus:
In Trusted Components we Trust!
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Why Should this Talk Interest you?

Bad News

Trusted Hardware
cannot be used
to efficiently reduce replication

factor of BFT protocols to 2f+1.

Good News

Trusted Hardware
can be used
to design more efficient and

scalable 3f+1 BFT protocols.



Replicated State Machine
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Replicated State Machine

 Safety & Consistent log of operations.
 Liveness = Replicas should make progress.

* Responsiveness = Client should receive response.



Byzantine Fault Tolerant RSM

n replicas & at most f byzantine 2 n >=3£f+1

Run Byzantine Fault Tolerant (BFT) Consensus



Byzantine Fault Tolerance Consensus
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Non-Equivocation

Create a Prepare Quorum:
No two prepare quorums can exist for

different transactions at the same sequence number.

Every quorum needs to intersect in at least one honest replica.




Persistence

If a new leader is elected,
RSM should ensure that

previously committed requests persist.



Execution

Client needs f+1 matching responses.
Ensures execution by one honest replica.

Proof of request commitment not sufficient.




The Ugly Side of BFT
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Crash Fault Tolerant
Systems
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Equivocation is root cause of

higher replication factor
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Maybe Trusted Hardware Can help?

O Keystone e




Trusted Byzantine Fault-Tolerance Consensus

Trusted component attest order of each transaction.

Replicas cannot equivocate.

A2M, TrInc, MinBFT, MinZZ, CheapBFT, Hotstuff-M, Damysus

Trust-BFT protocols = 2f+1 enough for safety
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Trust-Byzantine Fault Tolerance Consensus
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Trust-Byzantine Fault Tolerance Consensus

ws  Transaction
1«:;1

A ’
Alice

Result [f+1 replicas vote prepare.]

Request 1s prepared

[ f+1 replicas vote commit ]

Request is committed

Any replica that
commits, executes.
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So Are We Done?”?

Unfortunately No!
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Hidden Pitfalls with Trust-BFT Protocols

» Algorithmic Pitfall

» Limited Responsiveness
» Loss of Safety under Rollbacks
» Lack of Parallelism

» Measurement Pitfall

» Instead of focusing on reducing replication = Focus on increasing Throughput per Machine.

16



Homnest replica

sends Result

Limited Responsiveness

<« Transaction
5 =J Quorum Size = f+1 =2
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Request 1s committed

Honest replica that
commits, executes.
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Alice Stuck!

Alice needs f+1 = 2 matching responses.

Alice receives only 1 response.
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No progress for Alice




Lack of Parallelism

» Every message sent requires an attestation bound to specific sequence number.
» Replicas cannot run consensus on two transactions in parallel!

» We show that despite 2f+1 replicas, Trusted-BFT protocols are slower than BFT.
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Loss of Safety under Rollbacks

» Trusted Enclaves can be rollbacked!

» On enclave rollback, safety cannot be guaranteed.

» Possible Solution? Make use of TPMs or persistent counters!

» Too slow = 180ms per access.
» Very few writes = TPMs allow at most 1 million writes.

» Trust-BFT protocols require O(n) accesses per consensus phase.
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Solution =2
FlexiTrust Protocols

» A novel suite of protocols.

» Guarantee both liveness and responsiveness.

» Require access to trusted component only once per consensus.

» Employing TPMs to avoid enclave rollbacks is now much less expensive!



Magical Ingredients behind
FlexiTrust Protocols

» Switch back to replication factor 3f+1.

» Larger Quorums guarantee responsiveness.

» Trusted hardware accessed only by the primary before sending proposal.

» Guarantees non-equivocation.

» Permits replicas to participate in multiple consensus invocations in parallel.

» Helps to reduce phases and communication.
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Flexi-ZZ Protocol!

Alice
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Single phase, Linear, Handles f failures, Only needs Trusted counters. 2



Evaluation on ResilientDB*

S‘I ResilientDB 2

*https://resilientdb.com/



https://resilientdb.com/

Throughput per Machine

Replicas (in f) | Total Replicas (in n) Protocols
FLEXI-ZZ | MINZZ | FLEXI-ZZ | MINZZ
4 13 9 15813 12431
8 25 17 7570 5329
16 49 33 2462 20338
24 73 49 1341 1002
32 97 63 334 640

» MinZZ -> Single phase like FlexiZZ but n >= 2f+1.

» For these experiments, we deployed up to 80k clients.



Scalability
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» Conclusions:

= Simply reducing replication will not yield higher throughput.
= Existing Trust-BFT protocols limit responsiveness and scalability.

= FlexiTrust protocols advocate meaningful application of BFT consensus.

» Reach me:

= Twitter: suyash_sg

= Email: suyash.gupta@berkeley.edu

= Web: https://gupta-suyash.github.io/

gj ResilientDB
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